
Chapter 0 Introduction and Revisions

A course in Computer Peripherals is relatively uncommon. Most courses in Computer or
Electronics Engineering do not offer such a subject.  Some of the material covered in this course
is found as parts of courses covering computer interfacing, but the interdisciplinary nature of the
technology involved in most computer peripherals has caused the devices to be omitted from these
courses.

However, peripherals comprise a most significant component in any computer system for
three reasons. Firstly, it is the most visible part of the hardware, as peripherals provide the
interface between the human user and the system. Secondly, it constitutes a significant portion of
the total cost of the system, and thirdly, it is often a significant contributor to the performance
constraints of the system.

In the typical personal computer, the user enters commands and data at an input peripheral,
usually the keyboard and the results are presented to him at a CRT display or on hard copy
output produced by a printer.  From an economic viewpoint, for a total hardware value of the
cost contribution of the central processor, memory, associated power supply and cabinetry would
amount to approximately 30%. With Intel Pentium processors which run at more than 400 Mhz,
performance is undoubtedly limited by disk accesses and printer speeds, as well as by the user
himself.

Since the value of peripherals is a significant factor in any computer system, it is also a
significant contributor to the computer industry as a whole. As a result of the large investments in
manufacturing facilities made by disk drive manufacturers, Singapore has become the disk drive
capital of the world. Companies like Seagate, Conner and Maxtor are among the largest disk
drive manufacturers in the world, and most of their manufacturing capacities are based in
Singapore. Local companies like Creatives who specialised in peripherals devices like sound
blaster cards, video blaster cards, DVD ROMs and RAMs is growing and contributed a lot to our
economy.

Apart from the above, other peripherals manufactured in Singapore include printers, CRT
displays and keyboards.

0.1. Definition

This is a course on computer peripherals, so we have to begin by defining what is meant by
the term peripheral. A computer system consists of a number of functional components, the most
significant of which is the central processor unit or CPU. The central processor, whether a large
mainframe or minicomputer or even a small microprocessor-based personal computer, performs
its logic, memory access and computation operations at rates of millions of operations per second.
In order for this capability to be harnessed and applied to the real physical world of slow humans
like us the results of these processes must be slowed down, translated into words,  images, or
control signals. It is the job of peripheral devices or peripherals to provide information to and
extract results from the central processor.
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0.2. Classification

Peripheral devices are usually classified by their function:
(1) Input devices such as keyboards, mice, bar-code scanners and digitisers.
(2) Output devices like printers, plotters and displays.
(3) Storage devices, which include floppy and hard disks, optical disks and

magnetic tape drives.
(4) Multi-media devices and others.

Most peripherals would fall into one of the above categories, although some may span two
classes. We will not cover the multi-media devices and it will be covered in CE446: Multimedia
Systems Design. If you look at a PC that you can get for slightly above $1,000, you will get a list
of peripherals together with it. A basic PC will have a keyboard for input, a harddisk for storage
and as well as a CRT display or output printer. Most system nowadays will come complete with
a floppy disk drive, a CD ROM and some user also include backup devices such as diskette, tape
drives an zip drives.

There are other classes of peripheral devices which will not be covered here. These are the
range of A/D and D/A interfaces for control and instrumentation, cameras and frame grabbers for
screen capturing and the various communications interfaces like LAN and ISDN devices which
are more dealt with in courses on real-time systems and data communications respectively.

Physical, Ergonomic, Safety and Environmental Requirements

In the selection and design of peripherals, a number of additional considerations have to be taken
into account, considerations which are often given scant attention in the design or selection of the
central processing unit. Usually the peripheral interacts with the user, thus defining the
environment in which the peripheral device must operate.  For example, in the case of the video
display terminal, although we can package all the electronics into a very light and small unit, we
need to realise that for fast and comfortable data entry, the keyboard must be of a certain size and
the displayed characters must not be too small for easy viewing. Apart from meeting the technical
specifications the following requirements should be taken into account.
(1) Environmental and safety requirements.  The operator or the application may not been

in a clean and air-conditioned room.  Power supplies may not be well regulated.  There
is no computer room environment.  Equipment designated to be installed in the home
will have to meet stringent standards regarding audio noise and radio frequency
interference. They also need to meet relevant safety standards.

(2) Ergonomics. Human factors should be taken into consideration.  For keyboards, it is the
tactile (touch) and/or audio feedback, the size, angle, travel and pressure of the keys
best suited for fast, accurate and comfortable typing?  For printers, what is the quality
of the printed report, is it noisy in operation? In the case of displays, what is the best
colour and brightness for viewing, is a darken room needed, is there an annoying glare
from the screen, what about the amount of radiation emitted by the CRT?

(3) Many countries have national standards and most of these are based on international
standards that have been defined and are continually modified. These standards
authorities include:
UL Underwriters' Laboratory, US safety
FCC Federal Communications Commission, US regulatory authority on

transmission, and radio interference
CSA Canadian Standards Association, safety
DIN German Standards, safety, ergonomics
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ISO International Standards Organization, safety, ergonomics, industrial standards
JIS Japan Industrial Standards, safety, industrial standards.

0.3. Computer I/O Architecture

Before proceeding with the study of computer peripherals, a brief review of the
architecture of the computer, the requirements of interface design, and the structure of computer
buses will be given.[TC1]

The digital computer normally consists of the central processing unit (CPU), memory,
input devices, output devices, and storage devices as shown in Fig. 1.1. Interconnecting these
components are the address, data and control buses. It is seen that each of the peripheral devices
is connected to CPU through the interface unit. These interface units generally comprise the
following:
(i) Transmit and receive data registers/buffer: As the CPU and the peripheral operate

asynchronously at different speeds, these registers and buffers (FIFO) are use to hold
and transfer data to and from the peripheral device. The length of these registers is
normally the same as the data-word length of the peripheral device.

(ii) Control registers: One or more control registers are used to capture and store the
command received from the CPU. With programmable devices, mode registers are used
to set the mode of operation of the device.

(iii) A status register: Each bit of the status register is used to indicate individual status
conditions to the CPU. Sometimes the CPU also writes the status register. In this case
the peripheral reads it to determine the status of the processor.

(iv) An address decoder: Irrespective of whether the device is interfaced using memory-
mapped or I/O-port techniques, the device will still have to decode the address
information from the CPU to determine whether it should respond. Again for
programmable devices, a series of addresses is decoded.
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Figure 1.1 Local bus

(v) Random logic: For simple devices, random logic circuits may be used to check the
status registers, read and write the data registers, perform timing, handle interrupt
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signals and other functions. However, an embedded micro controller chip is frequently
used.

0.4. Interfacing to Input/Output Devices

Interfacing between a CPU and a peripheral usually involves a trade-off between hardware
and software. The advantage of hardware is speed, whereas the disadvantages are cost and
inflexibility. The advantage of software is versatility, whereas its main disadvantage is its slow
speed.

Interfacing can be handled entirely by the CPU (in software, with minimal hardware
support), or at the other extreme, by a dedicated (intelligent) peripheral controller (in hardware,
with minimal software support). Somewhere between these two extremes is the more usual master
(CPU)-to-slave (peripheral) configuration, where the (dumb) peripheral support chip has a
number of built-in functions, accessible by the CPU writing various bit patterns to its onboard
control (command) register(s). The peripheral support chip handles many of the tasks with which
the CPU would otherwise need to concern itself.

A recent trend has been the emergence of coprocessor peripheral support chips which
enable the CPU and coprocessor to carry out their respective tasks concurrently, communicating
with each other upon completion. In many cases, these coprocessors are so intelligent that their
processing ability rivals that of the host CPU. The resulting configuration more closely resembles
a multiprocessor or distributed processing system, rather than the more traditional CPU-support
chip master-slave relationship. For example, the PCI support chips that your have learned in
CE302.

Table 1.1 Typical peripheral support chips.

FUNCTION MOTOROLA INTEL ZILOG

PARALLEL MC6821 (8-bit) i8255 Z8420
INTERFACE MC68230 (16-bit) i8256 Z8036

SERIAL MC6850 i8256 Z8440

PROGRAMMABLE MC6840 (8 bit) i8253,54 Z8430
TIMER MC68230 (16-bit) Z8036

CRT CONTROLLER MC6845 (8-bit) i8275

KEYBOARD i8279

BUS i8286, 89, 289
CONTROLLER i82188, 288

FLOPPY DISK MC6843 (8-bit) i8271
CONTROLLER

PRIORITY INT MC6828 i8259
CONTROLLER

DMA MC6844 (8-bit) i8237, 57 Z8410
CONTROLLER MC68440 (16-bit)

MEMORY i8202, 3, 7, 8
CONTROLLER  (DRAM)

MEMORY MC6829 (8-bit) Z8010,15
MANAGEMENT MC68451 (16-bit)
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Another trend has been the emergence of custom peripheral chips where, rather than use a
standard off-the-shelf support chip, a designer programs a dedicated single-chip microcomputer
to perform the desired task (for example, the i8041 used in the keyboard of the IBM PC
Keyboard). The success in the marketplace of specific microprocessor chips depends not only on
the inherent qualities of the parent CPU, but also on the ready availability of both support chips
and software for the processor in question. Ready access to data sheets, application notes and
technical supports (within the local geographical area) are further factors that sway a user
towards one particular processor over another.

In terms of functionality, it could be argued that one specific peripheral chip is superior to
another; manufacturers can supply so-called benchmarks which purport to show the superiority
of their products over their competitors. Such benchmarks should be regarded with a certain
degree of healthy scepticism however, unless they originate from an 'independent' third party. As
a rough rule-of-thumb, designers should choose support chips from the same processor family as
the CPU itself; whether they be actually manufactured by the chip designer, or by a second-
source company manufacturing the chips under license. After all, such support chips are
designed to work with that particular microprocessor (although this did not prevent Apple from
using Intel, Zilog and Synertek chips to support the Motorola CPU in their Macintosh
computer!).

Generally speaking, 32-bit support chips from the same manufacturer are more powerful
than 16-bit support chips, just as 16-bit chips are more powerful than 8-bit support chips.
Comparing 8-, 16- or 32-bit support chips from different manufacturers is not that
straightforward however; a lot depends on the particular application. Independent comparisons
usually show that such support chips are functionally equivalent at least. Table 1.1 provides a
representative sample of the more commonly available microprocessor peripheral support chips.

Nowadays, whenever a new microprocessor is released into the marketplace, it usually
incorporates the ability to utilise the already (and often quite substantial) support chip and
software base from the previous processor generation. For example, in the case of the MC68000,
Motorola designed into this processor the ability to interface to the already existing, tried and
proven family of MC68000 support chips; although the MC68000 is basically an asynchronous
processor, it also has the ability to interface to synchronous support chips. Newer (asynchronous)
16/32-bit support chips were subsequently developed to interface specifically to the
MC68000(20,30). A similar situation applies with the Intel family, which were able to utilise the
earlier i8080(86) support chips.

The Motorola MC68000 families use memory-mapped I/O and run on a synchronizing
E(nable)-clock. Intel and Zilog support chips do not depend for their operation on a synchronizing
clock signal from the CPU. They also assume ported I/O rather than memory mapping. In recent
years, support chips have been designed specifically to interface to the newer 16/32-bit
processors released by Intel, Motorola, Zilog, National Semiconductor and others.

Intel processors support ported I/O, whereas Motorola processors support memory-
mapped I/O. The advantage of memory mapping is that all I/O locations are addressed in exactly
the same manner as memory locations; no special repertoire of I/O instructions is therefore
required (along with the various addressing modes for each). Thus the overall size of the
instruction set is reduced. A disadvantage with memory mapping is that some additional external
address decoding is necessary to discriminate between memory and I/O devices (this is done
within the CPU for ported I/O schemes). Another disadvantage is that some of the available
address space is taken up with I/O device locations; not all of it is available for memory. Note,
however, that with ported I/O systems, not all of the available I/O address space is always used.
This means that memory-mapped I/O is more flexible.
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It should be pointed out that memory mapping can be used with Intel processors, over and
above the inbuilt ported I/O structure, assuming that the additional external decoding circuitry is
provided.

When interfacing between a CPU and a peripheral device, it is usual to provide some form
of bi-directional buffering between the two. This is often in the form of onboard registers within
a peripheral support chip. Having the data buffered within the I/O port means that the CPU can,
in effect, be reading from (or writing to) the I/O port at the same time as it is performing some
other function. This leads to rudimentary concurrent operation. Such buffering also allows for
different speeds between the CPU and peripheral device, for example, a printer will not be able to
keep pace with characters reaching it from a CPU: a block of characters (say 256 bytes) is
therefore buffered within the I/O section (in dedicated local memory).

Buffering is also often required between CPU and a peripheral device due to the different
electrical characteristics of the two devices. The CPU usually operates at TTL logic levels (+5
V[HI] and 0V[LO]) whereas peripheral devices can have many different voltage and current
characteristics.

Voltage level translation, scaling (up or down), current boosting (or limiting), or even
analog-to-digital (and digital-to-analog) conversion might be required, depending on the
peripheral in question.

An I/O interface can also act as a translator, adapting signals from one format (say ASCII
or BCD) to another (binary).

Software input and output buffers will often is required over and above the hardware
buffers just discussed. Double buffering is commonly used, while circular buffering is needed for
highly asynchronous operation such as network communication protocol. Double buffering
allows the peripheral device to transfer a block of data into one area of memory while the CPU is
simultaneously fetching data placed into another area of memory on a previous occasion. Each
buffer is used alternately by the CPU and disk. At times, the disk will be transferring data into
buffer A, at the same time as the CPU is fetching data from buffer B.  At other times, the disk
will be loading buffer B, and the CPU will be fetching data from buffer A. Double buffering thus
allows for concurrent operation.

In a circular buffer, the PC and the peripheral device are simultaneously filling and
removing items from the First-In-First-Out (FIFO) buffer. In practice, care must be taken to
select a buffer length sufficiently large so that buffer overflow does not occur (pointer movements
are restricted to modulo of buffer length). The circular list is empty whenever the PC and the
peripheral device pointers become equal. A typical application of such a data structure is in a
serial data communications link, where characters arrive at random intervals, but where the CPU
removes them at regular intervals. (The circular list thus acts as a buffer between the
asynchronous peripheral device and the synchronous processor.)

0.5. I/O Interfacing Techniques

The times at which data reaches a computer from the outside world can be quite
unpredictable. The processor therefore needs some means of synchronising itself to external
events, for scheduling I/O transfers. There are two main methods of achieving this
synchronisation, namely polling and interrupts.

0.5.1. Polling

Polling is a software technique whereby the processor continually asks a peripheral device
if it needs servicing. During input, the I/O device sets a flag in the status register (SR) when it
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has data ready for transferring to the CPU. Subsequently when the device is polled, the processor
reads this status and goes on to read the data in. Similarly when the CPU has data to output, it
polls the device to check for a ready status, upon which data is then written into the peripheral
device. Several such I/O devices can be polled in succession, with the processor jumping to
different I/O software routines, depending on which flags have been set.

Polling works well if a minimum amount of processing is required in response to each set
flag. For slow I/O transfers, the processor will be spending most of its time in its polling loop,
asking each I/O device in turn if it has any data ready. This amount to wasted time, during which
the CPU could be carrying out other useful tasks. In applications where there is little else for the
processor to do (such as in keyboard scanning, for example), this is fine, but for applications
which involve substantial calculation as well, this amounts to inefficient use of the processor. The
advantage of the polling technique is its simplicity.

0.5.2. Interrupts

Rather than have the CPU continually asking I/O devices whether they have any data
available (and finding most of the time that they have not), a more efficient method is to have the
I/O devices tell the processor when they have data ready. The processor can be carrying out its
normal function, only responding to I/O transfers when there is data to respond to. On receipt of
an interrupt, the CPU suspends its current operation (storing the contents of its program counter,
SR and other registers), identifies the interrupting device, then jumps (vectors) to the appropriate
interrupt service routine (interrupt handler).

The advantages of interrupts, compared with polling, are the speed of response to external
events and the reduced software overhead (of continually asking I/O devices whether they have
any data ready). Its main disadvantages are software commissioning and maintenance, and the
additional hardware overhead required (in the form of device identification, supplying vector
information and priority resolution).

A typical interrupt interface requires two handshake controls. The two handshake control
lines that interface between the CPU and I/O port are Interrupt Request and Interrupt
Acknowledge. Most systems will have more than one I/O port, with its associated set of interrupt
handshake lines, so that some form of external (hardware) arbitration will be necessary in order
to resolve priorities. This priority resolver decides in which order the devices will be serviced in
the event of multiple interrupt requests occurring.

With more than one possible interrupting device, a priority must be allocated to each.
Within the CPU it will therefore be necessary to mask off lower priority interrupts, and to
respond only to those of higher priority (non-maskable interrupts, however, must always be
responded to by the processor, a typical example being a system control console). In cases where
several devices are allocated the same priority level, additional external hardware (in the form of
a PIC) will be necessary.

There will be some means within the CPU whereby interrupts can be enabled and disabled.
For example, the very first function performed by the interrupt handler is to 'disable further
interrupts', so that the current interrupt can be attended to first. Any interrupts that occur during
the servicing of this first one will usually be latched into the I/O port, and remain pending until
the processor is ready to deal with them (that is, providing their priority level was higher than the
current mask).

Some processors also provide an auto vector facility, whereby the starting location of the
interrupt service routine can be set automatically within the CPU, depending on its priority level.
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0.5.3. Direct Memory Access (DMA)

Interrupts provide fast response to a peripheral device, but the servicing of the interrupt is
performed in software. Sometimes I/O transfers need to occur faster than interrupts can manage,
such as with disk I/O, high-speed graphics, or interfacing to a Local Area Network (LAN). The
servicing previously carried out by software can be performed faster if it is done by specialised
hardware. Such a dedicated controller is designed to perform one specific task only, namely the
high-speed transfer of data between the I/O device and memory (and vice versa), but bypassing
the CPU. Hence the technique is referred to as Direct Memory Access (DMA).

With DMA, the device actually takes control of the system bus for the time required to
transfer the data, then hands back the bus to the CPU upon completion. Most harddisk
controller uses a DMA Controller (DMAC) for data transfers between disk and memory. The
disk is connected to a peripheral controller which communicates to the DMAC via the Transfer
Request and Transmit Acknowledge handshake lines. The DMAC in turn interfaces to the CPU
via the Bus Request, Bus Acknowledge and Transfer Complete lines.

It is important to realise that the DMAC itself is accessed by the CPU as a typical I/O
device, with its own unique port ID, vector and interrupt priority. However, once the DMAC
has been granted the bus in 'burst' mode, it cannot be interrupted by the CPU (in this sense the
DMAC has priority over the processor). With 'interleaved' or 'cycle steal' DMA, the DMAC and
CPU share alternate bus cycles.

DMA transfers are inherently faster than either interrupts or polling, since they bypass
altogether the imbedded instruction fetch-decode-execute cycles of the CPU. Rather than
fetching instructions sequentially from memory, a DMAC has inbuilt (firmware) instructions.
Moreover, these instructions can be executed concurrently, for example, transferring data at the
same time as decrementing a byte counter.

0.6. Summary

In this introductory chapter, we revised interfacing of Input/Output (I/O) devices to a
CPU. In current development, this is usually facilitated by the use of user-programmable
peripheral support chips. Such peripheral chips are connected to the CPU in master-slave
configuration, with their onboard command and status registers accessible via the system bus.
More recent peripheral support chips comprise dedicated I/O processors, some of which employ
a coprocessor philosophy, which leads to concurrent operation of the peripheral chip and the
CPU.

Memory-mapped and ported I/O schemes were compared and contrasted, and the
advantages and disadvantages of each mentioned.

The need for both hardware and software buffering between CPU and peripheral device
was highlighted - the former for matching electrical signal levels, and the latter for the
temporary storage of data until the CPU (and/or peripheral) can deal with it.

The basic I/O techniques of software polling, interrupts and Direct Memory Address
(DMA) were introduced, and their respective advantages and disadvantages pointed out.
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