
ATA PIO Mode 
According to the ATA specs, PIO mode must always be supported by all ATA-compliant drives as the default data 
transfer mechanism. 

PIO mode uses a tremendous amount of CPU resources, because every byte of data transferred between the disk 
and the CPU must be sent through the CPU's IO port bus (not the memory). On some CPUs, PIO mode can still 
achieve actual transfer speeds of 16MB per sec, but no other processes on the machine will get any CPU time. 

However, when a computer is just beginning to boot there are no other processes. So PIO mode is an excellent 
and simple interface to utilize during bootup, until the system goes into multitasking mode. 

Hardware 

The ATA disk specification is built around an older specification called ST506. With ST506, each disk drive was 
connected to a controller board by two cables -- a data cable, and a command cable. The controller board was 
plugged into a motherboard bus. The CPU communicated with the controller board through the CPU's IO ports, 
which were directly connected to the motherboard bus. 

What the original IDE specification did was to detach the disk controller boards from the motherboard, and stick 
one controller onto each disk drive, permanently. When the CPU accessed a disk IO port, there was a chip that 
shorted the CPU's IO bus pins directly onto the IDE cable -- so the CPU could directly access the drive's controller 
board. The data transfer mechanism between the CPU and the controller board remained the same, and is now 
called PIO mode. (Nowadays, the disk controller chips just copy the electrical signals between the IO port bus and 
the IDE cable, until the drive goes into some other mode than PIO.) 

Master/Slave Drives 

There is only one wire dedicated to selecting which drive on each bus is active. It is either electrically "high" or 
"low", which means that there can never be more than two devices operational on any ATA bus. They are called 
the master and the slave devices, for no particular reason. Their functionality is almost completely identical. There 
is a special IO port bit that allows a driver to select either drive as the target drive for each command byte. 

Primary/Secondary Bus 

Current disk controller chips almost always support two ATA buses per chip. There is a standardized set of IO 
ports to control the disks on the buses. The first two buses are called the Primary and Secondary ATA bus, and 
are almost always controlled by IO ports 0x1F0 through 0x1F7, and 0x170 through 0x177, respectively (unless you 
change it). The associated Device Control Registers/Alternate Status ports are IO ports 0x3F6, and 0x376, 
respectively. The standard IRQ for the Primary bus is IRQ14, and IRQ15 for the Secondary bus. 

If the next two buses exist, they are normally controlled by IO ports 0x1E8 through 0x1EF, and 0x168 through 
0x16F, respectively. The associated Device Control Registers/Alternate Status ports are IO ports 0x3E6, and 
0x366. 

The actual control registers and IRQs for each bus can often be determined by enumerating the PCI bus, finding 
all the disk controllers, and reading the information from each controller's PCI Configuration Space. So, technically, 
PCI enumeration should be done before ATA device detection. However, this method is not exactly reliable. 

When the system boots, according to the specs, the PCI disk controller is supposed to be in 
"Legacy/Compatibility" mode. This means it is supposed to use the standardized IO port settings. You may have 
no real choice but to rely on that fact. 

400ns delays 

The method suggested in the ATA specs for sending ATA commands tells you to check the BSY and DRQ bits 
before trying to send a command. This means that you need to read a Status Register (Alternate Status is a good 
choice) for the proper drive before sending the next command. Which means that you need to select the correct 
device first, before you can read that status (and then send all the other values to the other IO ports). Which 
means that a drive select may always happen just before a status read. This is bad. Many drives require a little 
time to respond to a "select", and push their status onto the bus. The suggestion is to read the Status 
register FIVE TIMES, and only pay attention to the value returned by the last one -- after selecting a new master or 
slave device. The point being that you can assume an IO port read takes approximately 100ns, so doing the first 
four creates a 400ns delay -- which allows the drive time to push the correct voltages onto the bus. 

Reading IO ports to create delays wastes a lot of CPU cycles. So, it is actually smarter to have your driver 
remember the last value sent to each Drive Select IO port, to avoid doing unneeded drive selections, if the value 
did not change. If you do not send a drive select, then you only have to read the Status Register once. 

 



Alternately, you never want to send new commands to a drive that is already servicing a previous command, 
anyway. Your driver always needs to block if the current device is actively modifying BSY/DRQ/ERR, and your 
device driver always already knows that the device is in that condition (because the driver just sent the command 
to the device, and it hasn't been marked "complete" yet). Once a drive has actually completed a command, it will 
always clear BSY and DRQ. You can simply verify this, before your next Device Select command -- that the 
previously selected device cleared BSY and DRQ properly at command completion. Then you will never have to 
check if they are clear after a Device Select -- so you will not have to read the Status Register after the Device 
Select at all. 

There is a similar problem after writing the Command Register, with the ERR/DF bits. They are two slightly 
different kinds of errors that can terminate a command. BSY and DRQ will be cleared, but ERR or DF remain 
set until just after you write a new command to the Command Register. If you are using polling (see below), you 
should account for the fact that your first four reads of the Status Register, after sending your command byte, may 
have the ERR or DF bits still set accidentally. (If you are using IRQs, the Status will always be correct by the time 
the IRQ is serviced.) 

Cache Flush 

On some drives it is necessary to "manually" flush the hardware write cache after every write command. This is 
done by sending the 0xE7 command to the Command Register (then waiting for BSY to clear). If a driver does not 
do this, then subsequent write commands can fail invisibly, or "temporary bad sectors" can be created on your 
disk. 

Bad Sectors 

For practical purposes, there are three different types of bad sectors on an ATA disk. 

 Sectors that can't be written (permanent) 

 Sectors that can't be read (permanent) 

 Sectors that can't be read (temporary) 

Some disk manufacturers have a feature that allows a small supply of "spare" sectors on the disk to be remapped 
onto permanent bad sectors. However, that feature is non-standard and completely manufacturer-specific. In 
general, an OS/filesystem will need to keep a "bad sector list" for each partition of each drive, and work around the 
bad sectors. 

As said above, there are also "temporary bad sectors". When you read them you will get a hardware error, just like 
for a permanently bad sector. If you write to that sector, however, the write will work perfectly and the sector will 
turn back into a good sector. Temporary bad sectors can happen as a result of unflushed write caches, power 
spikes, or power failures. 

Detection and Initialization 

Floating Bus 

The disk that was selected last (by the BIOS, during boot) is supposed to maintain control of the electrical values 
on each IDE bus. If there is no disk connected to the bus at all, then the electrical values on the bus will all go 
"high" (to +5 volts). A computer will read this as an 0xFF byte -- this is a condition called a "floating" bus. This is an 
excellent way to find out if there are no drives on a bus. Before sending any data to the IO ports, read the 
Regular Status byte. The value 0xFF is an illegal status value, and indicates that the bus has no drives. The 
reason to read the port before writing anything is that the act of writing can easily cause the voltages of the wires 
to go screwy for a millisecond (since there may be nothing attached to the wires to control the voltages!), and 
mess up any attempt to measure "float". 

Measuring "float" is a shortcut for detecting that drives do not exist. Reading a non-0xFF value is not completely 
definitive. The definitive test for detecting drives is the #IDENTIFY command. 

Detecting Controller IO Ports 

Detecting controller IO ports is probably a waste of time. During boot, the IO ports assigned to the ATA bus are 
supposed to be located at standardized addresses. If they are not there, your only chance of finding them is to 
enumerate the disk controllers on the PCI bus. Alternately, if the ports are at the standard addresses, then 
"detecting" them gains you nothing. However, you will see controller detection code around, and it is a good thing 
to be able to recognize it, and know what it is for. If you suspect you know the location of a set of ATA controller IO 
ports, and there is at least one drive attached to that bus, then you can "detect" those IO ports. ATA controller IO 
ports are mostly read/write ports. This means that if you write a value to (for example) the "SectorCount" IO port, 
then you are supposed to be able to read the same value back again, to see what it is set to. This read/write 
function is performed by the master drive on the bus, unless the slave drive both exists and is selected. One 
caveat is that if you write a value to a "non-existent" IO port, you may be able to read that value back off the bus, if 
you read it immediately.  



So, generally, the way ATA IO port detection software works is to write a byte to one suspected ATA IO port, write 
a different byte to a different ATA IO port, then read back and verify the two values written to the two ports. If both 
bytes verify, then the IO ports are read/write ports, and they can be presumed to be ATA controller IO ports. On 
the Primary bus, ports 0x1F2 through 0x1F5 should all be read/write. 

Standard and Non-standard Detection 

All current BIOSes have standardized the use of the IDENTIFY command to detect the existence of all types of 
ATA bus devices ... PATA, PATAPI, SATAPI, SATA. 

There are two other nonstandard techniques that are not recommended. The first is to select a device (then do a 
400ns delay) then read the device's Status Register. For ATA devices that are not "sleeping", the RDY bit will 
always be set. This should be detectable, just so long as you have already tested for float (where all the bits are 
always set). If there is no device, then the Status value will be 0. This method does not work for detecting ATAPI 
devices -- their RDY bit is always clear (until they get their first PACKET command). 

The other method is to use the Execute Device Diagnostics command (0x90). It supposedly sets bits in the Error 
Register (0x1F1 on the Primary bus) to show the existence of master and slave devices on the bus. 

IDENTIFY command 

To use the IDENTIFY command, select a target drive by sending 0xA0 for the master drive, or 0xB0 for the slave, 
to the "drive select" IO port. On the Primary bus, this would be port 0x1F6. Then set the Sectorcount, LBAlo, 
LBAmid, and LBAhi IO ports to 0 (port 0x1F2 to 0x1F5). Then send the IDENTIFY command (0xEC) to the 
Command IO port (0x1F7). Then read the Status port (0x1F7) again. If the value read is 0, the drive does not exist. 
For any other value: poll the Status port (0x1F7) until bit 7 (BSY, value = 0x80) clears. Because of some ATAPI 
drives that do not follow spec, at this point you need to check the LBAmid and LBAhi ports (0x1F4 and 0x1F5) to 
see if they are non-zero. If so, the drive is not ATA, and you should stop polling. Otherwise, continue polling one of 
the Status ports until bit 3 (DRQ, value = 8) sets, or until bit 0 (ERR, value = 1) sets. 

At that point, if ERR is clear, the data is ready to read from the Data port (0x1F0). Read 256 words, and store 
them. 

"Command Aborted" 

ATAPI or SATA devices are supposed to respond to an ATA IDENTIFY command by immediately reporting an 
error in the Status Register, rather than setting BSY, then DRQ, then sending 256 words of PIO data. These 
devices will also write specific values to the IO ports, that can be read. Seeing ATAPI specific values on those 
ports after an IDENTIFY is definitive proof that the device is ATAPI -- on the Primary bus, IO port 0x1F4 will read 
as 0x14, and IO port 0x1F5 will read as 0xEB. If a normal ATA drive should ever happen to abort an IDENTIFY 
command, the values in those two ports will be 0. A SATA device will report 0x3c, and 0xc3 instead. See below for 
a code example. 

However, at least a few real ATAPI drives do not set the ERR flag after aborting an ATA IDENTIFY command. So 
do not depend completely on the ERR flag after an IDENTIFY. 

Interesting information returned by IDENTIFY 

 Word 0: is useful if the device is not a hard disk. 

 Word 83: Bit 10 is set if the drive supports LBA48 mode. 

 Word 88: The bits in the low byte tell you the supported UDMA modes, the upper byte tells you which UDMA 
mode is active. If the active mode is not the highest supported mode, you may want to figure out why. 

 Word 93 from a master drive on the bus: Bit 12 is supposed to be set if the drive detects an 80 pin cable. 

 Words 60 & 61 taken as a DWORD contain the total number of 28 bit LBA addressable sectors on the drive. 
(If non-zero, the drive supports LBA28.) 

 Words 100 through 103 taken as a QWORD contain the total number of 48 bit addressable sectors on the 
drive. (Probably also proof that LBA48 is supported.) 

 

 

 

 

 

 



Addressing Modes 

Currently there are three addressing modes to select particular sectors to read or write on a disk. They are 28 bit 
LBA, 48 bit LBA, and CHS. CHS mode is obsolete, but is discussed quickly below. The number of bits in the LBA 
modes refer to the number of significant bits in the sector "address", called an LBA. In 28 bit mode, LBAs from 0 to 
0x0FFFFFFF are legal. This gives a total of 256M sectors, or 128GB of addressible space. So 28 bit LBA mode is 
also obsolete for many current drives. However, 28 bit PIO mode is faster than 48 bit addressing, so it may be a 
better choice for drives or partitions that do not violate the maximum LBA value limitation. 

Absolute/Relative LBA 

All the ATA commands that use LBA addressing require "absolute" LBAs (ie. the sector offset from the very 
beginning of the disk -- completely ignoring partition boundaries). At first glance, it might seem most efficient to 
store the LBA values in this same format in your OS. However, this is not the case. It is always necessary to 
validate the LBAs that are passed into your driver, as truly belonging to the partition that is being accessed. It ends 
up being smartest to use partition-relative LBA addressing in your code, because you then never need to test if the 
LBA being accessed is "off the front" of your current partition. So you only need to do half as many tests. This 
makes up for the fact that you need to add the absolute LBA of the beginning of the current partition to every 
"relative" LBA value passed to the driver. At the same time, doing this can give you access to one additional LBA 
address bit. (See the "33 bit LBA" driver code below.) 

Registers 

An ATA bus typically has 9 I/O ports that control its behavior. For the primary bus, these I/O ports are 0x1F0 
through 0x1F7, and 0x3F6 (see the directions below for usage details). The values in this table are relative to the 
so-called I/O port base address. So a port value of 1 actually means 0x1F0 + 1 = 0x1F1. This is done because the 
base address may vary depending on the hardware. 

Port Offset Function Description 

0 Data Port Read/Write PIO data bytes on this port. 

1 Features / Error Information Usually used for ATAPI devices. 

2 Sector Count Number of sectors to read/write (0 is a special value). 

3 Sector Number / LBAlo This is CHS / LBA28 / LBA48 specific. 

4 Cylinder Low / LBAmid Partial Disk Sector address. 

5 Cylinder High / LBAhi Partial Disk Sector address. 

6 Drive / Head Port Used to select a drive and/or head. May supports extra address/flag bits. 

7 Command port / Regular Status port Used to send commands or read the current status. 

 
Status Byte 

In the following table you will find the layout of the so-called Status Byte. 

Bit Abbreviation Function 

0 ERR Indicates an error occurred. Send a new command to clear it (or nuke it with a Software Reset). 

3 DRQ Set when the drive has PIO data to transfer, or is ready to accept PIO data. 

4 SRV Overlapped Mode Service Request. 

5 DF Drive Fault Error (does not set ERR). 

6 RDY Bit is clear when drive is spun down, or after an error. Set otherwise. 

7 BSY 
Indicates the drive is preparing to send/receive data (wait for it to clear). In case of 'hang' (it never clears), do a 

software reset. 

Technically, when BSY is set, the other bits in the Status byte are meaningless. It is also generally a Bad Idea to 
test the "Seek Complete" (DSC) bit, because it has been deprecated and reused for another purpose. 

Device Control Register / Alternate Status 

There is an additional IO port that changes the behavior of each ATA bus, called the Device Control Register (on 
the Primary bus, port 0x3F6). Each ATA bus has its own Control Register. You cannot read the Control Register. 
Reading the port gets you the value of the Alternate Status Register, instead. The value of Alternate Status is 
always the same as the Regular Status port (0x1F7 on the Primary bus), but reading the Alternate Status port 
does not affect interrupts. (See Preempting IRQs, below). 



Control Register bit definitions: 

Bit Abbreviation Function 

1 nIEN Set this to stop the current device from sending interrupts. 

2 SRST Set this to do a "Software Reset" on all ATA drives on a bus, if one is misbehaving. 

7 HOB Set this to read back the High Order Byte of the last LBA48 value sent to an IO port. 

All other bits are reserved and should always be clear. In general, you will want to leave HOB, SRST, and nIEN 
cleared. Set each Device Control Register to 0 once, during boot. 

Resetting a drive / Software Reset 

For non-ATAPI drives, the only method a driver has of resetting a drive after a major error is to do a "software 
reset" on the bus. Set bit 2 (SRST, value = 4) in the proper Control Register for the bus. This will reset both ATA 
devices on the bus. Then, you have to clear that bit again, yourself. The master drive on the bus is automatically 
selected. ATAPI drives set values on their LBA_LOW and LBA_HIGH IO ports, but are not supposed to reset or 
even terminate their current command. 

IRQs 

Note: When a command terminates with an error, it does not generate an IRQ. It is smart to check the Alternate 
Status Register a few times per second to see if the ERR bit has set. Otherwise, you will not know until your 
command times out. 

Handling an IRQ 

In the early days, the only intent of an IRQ was to inform the IRQ handler that the drive was ready to send or 
accept data. The expectation was that the IRQ handler itself would perform a PIO based data transfer of the next 
data block, immediately. Now things are not so simple. One or both of the drives on the bus may be in DMA mode, 
or have data block sizes other than 256 words. Also, there is more emphasis now on returning as quickly as 
possible out of the IRQ handler routine. So the question is: what is the minimal set of operations that an IRQ 
handler needs to do? 

If you are using IRQ sharing, you will need to check the PCI Busmaster Status byte, to verify that the IRQ came 
from the disk. If it did, it is necessary to read the Regular Status Register once, to make the disk clear its interrupt 
flag. If the ERR bit in the Status Register is set (bit 0, value = 1), you may want to read and save the "error details" 
value from the Error IO port (0x1F1 on the Primary bus). 

If the transfer was a READ DMA operation, you must read the value from the Busmaster Status Register. Since 
the IRQ handler probably doesn't know whether the operation was a DMA operation or not, you will probably end 
up checking the Busmaster Status byte after all IRQs (if the bus is controlled by a PCI controller at all -- which it 
almost certainly is). If that byte has its ERR bit set (bit 1, value = 2), you may want to save the current values in the 
disk's LBA IO ports -- they can tell you which sector on the drive generated the error. You will also need to clear 
the error bit, by writing a 2 to it. 

You will also need to send EOI (0x20) to both PICs, to clear their interrupt flags. Then you need to set a flag to 
"unblock" the driver, and let it know that another IRQ has occurred -- so the driver can do any necessary data 
transfer. 

Note: if you are still in singletasking mode, and polling the Regular Status Register in PIO mode only, then the only 
thing the IRQ handler needs to do is send EOI to the PICs. You may even want to set the Control Register's nIEN 
bit, to try to shut off disk IRQs completely. 

Polling the Status vs. IRQs 

When a driver issues a PIO read or write command, it needs to wait until the drive is ready before transferring 
data. There are two ways to know when the drive is ready for the data. The drive will send an IRQ when it is good 
and ready. Or, a driver can poll one of the Status ports (either the Regular or Alternate Status). 

There are two advantages to polling, and one gigantic disadvantage. Advantages: Polling responds more quickly 
than an IRQ. The logic of polling is much simpler than waiting on an IRQ. 

The disadvantage: In a multitasking environment, polling will eat up all your CPU time. However, in singletasking 
mode this is not an issue (the CPU has nothing better to do) -- so polling is a good thing, then. 

How to poll (waiting for the drive to be ready to transfer data): Read the Regular Status port until bit 7 (BSY, value 
= 0x80) clears, and bit 3 (DRQ, value = 8) sets -- or until bit 0 (ERR, value = 1) or bit 5 (DF, value = 0x20) sets. If 
neither error bit is set, the device is ready right then. 

 



Preempting/Preventing IRQs from firing: 

If a driver ever reads the Regular Status port after sending a command to a drive, the "response" IRQ may never 
happen. If you want to receive IRQs, then always read the Alternate Status port, instead of the Regular Status 
port. But sometimes IRQs are just wasteful, and it is a good idea to make them go away. 

A much more complete way to prevent ATA IRQs from happening is to set the nIEN bit in the Control Register of a 
particular selected drive. This should prevent the drive on the bus from sending any IRQs at all, until you clear the 
bit again. However, it may not always work! Several programmers have reported problems making nIEN work. 
Drives only respond to newly written values of nIEN when they are the selected drive on the bus. That is, if a drive 
is selected, and you set nIEN, then select the other drive with the Drive Select Register, then clear nIEN -- then the 
first drive should "remember" forever that it was told not to send IRQs -- until you select it again, and write a 0 to 
the nIEN bit in the Control Register. 

Read/Write Multiple 

One way of trying to reduce the number of IRQs in multitasking PIO mode is to use the READ MULTIPLE (0xC4), 
and WRITE MULTIPLE (0xC5) commands. These commands make the drive buffer "blocks" of sectors, and only 
send one IRQ per block, rather than one IRQ per sector. See Words 47 and 59 of the IDENTIFY command, to 
determine the number of sectors in a block. You can also try to use the SET MULTIPLE MODE (0xC6) command, 
to change the sectors per block. 

NOTE: Overall, PIO mode is a slow transfer method. Under real working conditions, almost any drive should be 
controlled by a DMA driver, and should not be using PIO. Trying to speed up PIO mode by preempting IRQs (or 
any other method) is mostly a waste of time and effort. ATA drives that are 400MB or smaller may not support 
Multiword DMA mode 0, however. If you want to support drives that size, then perhaps a little effort spent on PIO 
mode drivers is worthwhile. 

x86 Directions 

28 bit PIO 

Assume you have a sectorcount byte and a 28 bit LBA value. A sectorcount of 0 means 256 sectors = 128K. 

Notes: When you send a command byte and the RDY bit of the Status Registers is clear, you may have to wait 
(technically up to 30 seconds) for the drive to spin up, before DRQ sets. You may also need to ignore ERR and DF 
the first four times that you read the Status, if you are polling. 

An example of a 28 bit LBA PIO mode read on the Primary bus: 

1. Send 0xE0 for the "master" or 0xF0 for the "slave", ORed with the highest 4 bits of the LBA to port 0x1F6: 
outb(0x1F6, 0xE0 | (slavebit << 4) | ((LBA >> 24) & 0x0F)) 

2. Send a NULL byte to port 0x1F1, if you like (it is ignored and wastes lots of CPU time): outb(0x1F1, 0x00) 
3. Send the sectorcount to port 0x1F2: outb(0x1F2, (unsigned char) count) 
4. Send the low 8 bits of the LBA to port 0x1F3: outb(0x1F3, (unsigned char) LBA)) 
5. Send the next 8 bits of the LBA to port 0x1F4: outb(0x1F4, (unsigned char)(LBA >> 8)) 
6. Send the next 8 bits of the LBA to port 0x1F5: outb(0x1F5, (unsigned char)(LBA >> 16)) 
7. Send the "READ SECTORS" command (0x20) to port 0x1F7: outb(0x1F7, 0x20) 
8. Wait for an IRQ or poll. 
9. Transfer 256 words, a word at a time, into your buffer from I/O port 0x1F0. (In assembler, REP INSW 

works well for this.) 
10. Then loop back to waiting for the next IRQ (or poll again -- see next note) for each successive sector. 

Note for polling PIO drivers: After transferring the last word of a PIO data block to the data IO port, give the drive a 
400ns delay to reset its DRQ bit (and possibly set BSY again, while emptying/filling its buffer to/from the drive). 

Note on the "magic bits" sent to port 0x1f6: Bit 6 (value = 0x40) is the LBA bit. This must be set for either LBA28 or 
LBA48 transfers. It must be clear for CHS transfers. Bits 7 and 5 are obsolete for current ATA drives, but must be 
set for backwards compatibility with very old (ATA1) drives. 

Writing 28 bit LBA 

To write sectors in 28 bit PIO mode, send command "WRITE SECTORS" (0x30) to the Command port. 
Do not use REP OUTSW to transfer data. There must be a tiny delay between each OUTSW output word. A jmp 
$+2 size of delay. Make sure to do a Cache Flush (ATA command 0xE7) after each write command completes. 

48 bit PIO 

Reading sectors using 48 bit PIO is very similar to the 28 bit method: 

(Notes: A sector count of 0 means 65536 sectors = 32MB. Try not to send bytes to the same IO port twice in a 
row. Doing so is much slower than doing two outb() commands todifferent IO ports. The important thing is that 
the high byte of the sector count, and LBA bytes 4, 5, & 6 go to their respective ports before the low bytes.) 



Assume you have a sectorcount word and a 6 byte LBA value. Mentally number the LBA bytes as 1 to 6, from low 
to high. Send the 2 byte sector count to port 0x1F2 (high byte first), and the six LBA byte pairs to ports 0x1F3 
through 0x1F5 in some appropriate order. 

An example: 

1. Send 0x40 for the "master" or 0x50 for the "slave" to port 0x1F6: outb(0x1F6, 0x40 | (slavebit << 4)) 
2. outb (0x1F2, sectorcount high byte) 
3. outb (0x1F3, LBA4) 
4. outb (0x1F4, LBA5) 
5. outb (0x1F5, LBA6) 
6. outb (0x1F2, sectorcount low byte) 
7. outb (0x1F3, LBA1) 
8. outb (0x1F4, LBA2) 
9. outb (0x1F5, LBA3) 
10. Send the "READ SECTORS EXT" command (0x24) to port 0x1F7: outb(0x1F7, 0x24) 

Note on the "magic bits" sent to port 0x1f6: Bit 6 (value = 0x40) is the LBA bit. This must be set for either LBA28 or 
LBA48 transfers. It must be clear for CHS transfers. Any drive that can support LBA48 will ignore all other bits on 
this port for an LBA48 command. You can set them if it will make your code cleaner (to use the same magic bits as 
LBA28). 

To write sectors in 48 bit PIO mode, send command "WRITE SECTORS EXT" (0x34), instead. (As before, do not 
use REP OUTSW when writing.) And remember to do a Cache Flush after each write command completes. 

After the command byte is sent, transfer each sector of data in exactly the same way as for a 28 bit PIO 
Read/Write command. 

CHS mode 

Cylinder, Head, Sector mode is completely obsolete, but there are a few things to know about it, for legacy 
reasons. 

The oldest drives had many glass "platters", and two read/write "heads" per platter. The heads are always lined 
up, vertically. One head of one of the platters was usually used for "timing". As all the platters rotated, each head 
traced out a circle, and all the heads together traced out a "cylinder." Each circle traced out by each head was 
subdivided into some number of "sectors." Each sector could be used for storing 512 bytes of data. Selecting the 
Cylinder, Head, and Sector became an addressing mode. 

Changing the cylinder meant moving the whole head assembly, which was to be avoided if possible. 

But the important point is that none of this information has been true for the last 20 years -- except that computers 
kept accessing data via artificial CHS addressing. 

In CHS mode, every drive has a "geometry" -- the legal ranges for the CHS values. The typical maximum legal 
values are Cyl = 0 to 1023, Head = 0 to 15, Sector = 1 to 63. 

Please note that Sector = 0 is always illegal! That is a common cause of errors. (It is also possible that some 
hardware / drives will accept Cylinder values as high as 65537.) 

Converting CHS addressing to LBA is straightforward: (Cylinder * TotalHeads + SelectedHead) * SectorsPerTrack 
+ (SectorNum - 1). Sometimes programs will ask for a CHS address, and you will need to do that calculation by 
hand. 

Accessing sectors in CHS mode is basically identical to doing 28 bit LBA reads and writes, except that you leave 
the LBA bit (value = 0x40) turned off when writing the Bit Flags port, and you send various CHS bytes instead of 
LBA bytes to the IO ports. 

An example: 

1. Send 0xA0 for the "master" or 0xB0 for the "slave", ORed with the Head Number to port 0x1F6: 
outb(0x1F6, 0xA0 | (slavebit << 4) | Head Number) 

2. outb (0x1F2, bytecount/512 = sectorcount) 

3. outb (0x1F3, Sector Number -- the S in CHS) 

4. outb (0x1F4, Cylinder Low Byte) 

5. outb (0x1F5, Cylinder High Byte) 

6. Send the "READ SECTORS" command (0x20) to port 0x1F7: outb(0x1F7, 0x20) 

To write, send command "WRITE SECTORS" (0x30). 

Note on the "magic bits" sent to port 0x1f6: Bit 6 (value = 0x40) is the LBA bit. This must be clear for CHS 
transfers, as said above. Bits 7 and 5 are obsolete for current ATA drives, but must be set for backwards 
compatibility with very old (ATA1) drives. 



x86 Code Examples 

Detecting device types 

(Using a Software Reset -- adapted from PypeClicker) 

/*on Primary bus: ctrl->base=0x1F0, ctrl->dev_ctl=0x3F6. REG_CYL_LO=4, REG_CYL_HI=5, REG_DEVSEL=6 */ 

int detect_devtype (int slavebit, struct DEVICE *ctrl) 

{ 

 ata_soft_reset(ctrl->dev_ctl); /* waits until master drive is ready again */ 

 outb(ctrl->base + REG_DEVSEL, 0xA0 | slavebit<<4); 

 inb(ctrl->dev_ctl);  /* wait 400ns for drive select to work */ 

 inb(ctrl->dev_ctl); 

 inb(ctrl->dev_ctl); 

 inb(ctrl->dev_ctl); 

 unsigned cl=inb(ctrl->base + REG_CYL_LO); /* get the "signature bytes" */ 

 unsigned ch=inb(ctrl->base + REG_CYL_HI); 

  

 /* differentiate ATA, ATAPI, SATA and SATAPI */ 

 if (cl==0x14 && ch==0xEB) return ATADEV_PATAPI; 

 if (cl==0x69 && ch==0x96) return ATADEV_SATAPI; 

 if (cl==0 && ch == 0) return ATADEV_PATA; 

 if (cl==0x3c && ch==0xc3) return ATADEV_SATA; 

 return ATADEV_UNKNOWN; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ATA Driver 

A complete singletasking (polling) PIO mode driver for reading a hard disk (Note: the following routines should all 
include some form of OS-specific timeout.) 

; do a singletasking PIO ATA read 

; inputs: ebx = # of sectors to read, edi -> dest buffer, esi -> driverdata struct, ebp = 4b LBA 

; Note: ebp is a "relative" LBA -- the offset from the beginning of the partition 

; outputs: ebp, edi incremented past read; ebx = 0 

; flags: zero flag set on success, carry set on failure (redundant) 

read_ata_st: 

 push edx 

 push ecx 

 push eax 

 test ebx, ebx  ; # of sectors < 0 is a "reset" request from software 

 js short .reset 

 cmp ebx, 0x3fffff  ; read will be bigger than 2GB? (error) 

 stc 

 jg short .r_don 

 mov edx, [esi + dd_prtlen] ; get the total partition length (sectors) 

 dec edx    ; (to avoid handling "equality" case) 

 cmp edx, ebp   ; verify ebp is legal (within partition limit) 

 jb short .r_don   ; (carry is set automatically on an error) 

 cmp edx, ebx  ; verify ebx is legal (forget about the ebx = edx case) 

 jb short .r_don 

 sub edx, ebx   ; verify ebp + ebx - 1 is legal 

 inc edx 

 cmp edx, ebp   ; (the test actually checks ebp <= edx - ebx + 1) 

 jb short .r_don 

 mov dx, [esi + dd_dcr]  ; dx = alt status/DCR 

 in al, dx   ; get the current status 

 test al, 0x88  ; check the BSY and DRQ bits -- both must be clear 

 je short .stat_ok 

.reset: 

 call srst_ata_st 

 test ebx, ebx   ; bypass any read on a "reset" request 

 jns short .stat_ok 

 xor ebx, ebx   ; force zero flag on, carry clear 

 jmp short .r_don 

.stat_ok: 

; preferentially use the 28bit routine, because it's a little faster 

; if ebp > 28bit or esi.stLBA > 28bit or stLBA+ebp > 28bit or stLBA+ebp+ebx > 28bit, use 48 bit 

 cmp ebp, 0xfffffff 

 jg short .setreg 

 mov eax, [esi + dd_stLBA] 

 cmp eax, 0xfffffff 

 jg short .setreg 

 add eax, ebp 

 cmp eax, 0xfffffff 

 jg short .setreg 

 add eax, ebx 

 cmp eax, 0xfffffff 

.setreg: 

 mov dx, [esi + dd_tf]  ; dx = IO port base ("task file") 

 jle short .read28  ; test the flags from the eax cmp's above 

.read48: 

 test ebx, ebx  ; no more sectors to read? 

 je short .r_don 

 call pio48_read  ; read up to 256 more sectors, updating registers 

 je short .read48 ; if successful, is there more to read? 

 jmp short .r_don 

.read28: 

 test ebx, ebx  ; no more sectors to read? 

 je short .r_don 

 call pio28_read  ; read up to 256 more sectors, updating registers 

 je short .read28 ; if successful, is there more to read? 

.r_don: 

 pop eax 

 pop ecx 

 pop edx 

 ret 

  

  

 

 

 

 

 

 

 

 



;ATA PI0 28bit singletasking disk read function (up to 256 sectors) 

; inputs: ESI -> driverdata info, EDI -> destination buffer 

; BL = sectors to read, DX = base bus I/O port (0x1F0, 0x170, ...), EBP = 28bit "relative" LBA 

; BSY and DRQ ATA status bits must already be known to be clear on both slave and master 

; outputs: data stored in EDI; EDI and EBP advanced, EBX decremented 

; flags: on success Zero flag set, Carry clear 

pio28_read: 

 add ebp, [esi + dd_stLBA] ; convert relative LBA to absolute LBA 

 mov ecx, ebp   ; save a working copy 

 mov al, bl  ; set al= sector count (0 means 256 sectors) 

 or dl, 2  ; dx = sectorcount port -- usually port 1f2 

 out dx, al 

 mov al, cl  ; ecx currently holds LBA 

 inc edx   ; port 1f3 -- LBAlow 

 out dx, al 

 mov al, ch 

 inc edx   ; port 1f4 -- LBAmid 

 out dx, al 

 bswap ecx 

 mov al, ch  ; bits 16 to 23 of LBA 

 inc edx   ; port 1f5 -- LBAhigh 

 out dx, al 

 mov al, cl   ; bits 24 to 28 of LBA 

 or al, byte [esi + dd_sbits] ; master/slave flag | 0xe0 

 inc edx    ; port 1f6 -- drive select 

 out dx, al 

  

 inc edx   ; port 1f7 -- command/status 

 mov al, 0x20  ; send "read" command to drive 

 out dx, al 

  

; ignore the error bit for the first 4 status reads -- ie. implement 400ns delay on ERR only 

; wait for BSY clear and DRQ set 

 mov ecx, 4 

.lp1: 

 in al, dx  ; grab a status byte 

 test al, 0x80  ; BSY flag set? 

 jne short .retry 

 test al, 8  ; DRQ set? 

 jne short .data_rdy 

.retry: 

 dec ecx 

 jg short .lp1 

; need to wait some more -- loop until BSY clears or ERR sets (error exit if ERR sets) 

  

.pior_l: 

 in al, dx  ; grab a status byte 

 test al, 0x80  ; BSY flag set? 

 jne short .pior_l ; (all other flags are meaningless if BSY is set) 

 test al, 0x21  ; ERR or DF set? 

 jne short .fail 

.data_rdy: 

; if BSY and ERR are clear then DRQ must be set -- go and read the data 

 sub dl, 7  ; read from data port (ie. 0x1f0) 

 mov cx, 256 

 rep insw  ; gulp one 512b sector into edi 

 or dl, 7  ; "point" dx back at the status register 

 in al, dx  ; delay 400ns to allow drive to set new values of BSY and DRQ 

 in al, dx 

 in al, dx 

 in al, dx 

  

; After each DRQ data block it is mandatory to either: 

; receive and ack the IRQ -- or poll the status port all over again 

  

 inc ebp   ; increment the current absolute LBA 

 dec ebx   ; decrement the "sectors to read" count 

 test bl, bl  ; check if the low byte just turned 0 (more sectors to read?) 

 jne short .pior_l 

  

 sub dx, 7  ; "point" dx back at the base IO port, so it's unchanged 

 sub ebp, [esi + dd_stLBA] ; convert absolute lba back to relative 

; "test" sets the zero flag for a "success" return -- also clears the carry flag 

 test al, 0x21  ; test the last status ERR bits 

 je short .done 

.fail: 

 stc 

.done: 

 ret 

  

  



;ATA PI0 33bit singletasking disk read function (up to 64K sectors, using 48bit mode) 

; inputs: bx = sectors to read (0 means 64K sectors), edi -> destination buffer 

; esi -> driverdata info, dx = base bus I/O port (0x1F0, 0x170, ...), ebp = 32bit "relative" LBA 

; BSY and DRQ ATA status bits must already be known to be clear on both slave and master 

; outputs: data stored in edi; edi and ebp advanced, ebx decremented 

; flags: on success Zero flag set, Carry clear 

pio48_read: 

 xor eax, eax 

 add ebp, [esi + dd_stLBA] ; convert relative LBA to absolute LBA 

; special case: did the addition overflow 32 bits (carry set)? 

 adc ah, 0   ; if so, ah = LBA byte #5 = 1 

 mov ecx, ebp   ; save a working copy of 32 bit absolute LBA 

  

; for speed purposes, never OUT to the same port twice in a row -- avoiding it is messy but best 

;outb (0x1F2, sectorcount high) 

;outb (0x1F3, LBA4) 

;outb (0x1F4, LBA5)   -- value = 0 or 1 only 

;outb (0x1F5, LBA6)   -- value = 0 always 

;outb (0x1F2, sectorcount low) 

;outb (0x1F3, LBA1) 

;outb (0x1F4, LBA2) 

;outb (0x1F5, LBA3) 

 bswap ecx  ; make LBA4 and LBA3 easy to access (cl, ch) 

 or dl, 2  ; dx = sectorcount port -- usually port 1f2 

 mov al, bh  ; sectorcount -- high byte 

 out dx, al 

 mov al, cl 

 inc edx 

 out dx, al  ; LBA4 = LBAlow, high byte (1f3) 

 inc edx 

 mov al, ah  ; LBA5 was calculated above 

 out dx, al  ; LBA5 = LBAmid, high byte (1f4) 

 inc edx 

 mov al, 0  ; LBA6 is always 0 in 32 bit mode 

 out dx, al  ; LBA6 = LBAhigh, high byte (1f5) 

  

 sub dl, 3 

 mov al, bl  ; sectorcount -- low byte (1f2) 

 out dx, al 

 mov ax, bp  ; get LBA1 and LBA2 into ax 

 inc edx 

 out dx, al  ; LBA1 = LBAlow, low byte (1f3) 

 mov al, ah  ; LBA2 

 inc edx 

 out dx, al  ; LBA2 = LBAmid, low byte (1f4) 

 mov al, ch  ; LBA3 

 inc edx 

 out dx, al  ; LBA3 = LBAhigh, low byte (1f5) 

  

 mov al, byte [esi + dd_sbits] ; master/slave flag | 0xe0 

 inc edx 

 and al, 0x50  ; get rid of extraneous LBA28 bits in drive selector 

 out dx, al  ; drive select (1f6) 

  

 inc edx 

 mov al, 0x24  ; send "read ext" command to drive 

 out dx, al  ; command (1f7) 

  

; ignore the error bit for the first 4 status reads -- ie. implement 400ns delay on ERR only 

; wait for BSY clear and DRQ set 

 mov ecx, 4 

.lp1: 

 in al, dx  ; grab a status byte 

 test al, 0x80  ; BSY flag set? 

 jne short .retry 

 test al, 8  ; DRQ set? 

 jne short .data_rdy 

.retry: 

 dec ecx 

 jg short .lp1 

; need to wait some more -- loop until BSY clears or ERR sets (error exit if ERR sets) 

  

.pior_l: 

 in al, dx  ; grab a status byte 

 test al, 0x80  ; BSY flag set? 

 jne short .pior_l ; (all other flags are meaningless if BSY is set) 

 test al, 0x21  ; ERR or DF set? 

 jne short .fail 

 

 

 



.data_rdy: 

; if BSY and ERR are clear then DRQ must be set -- go and read the data 

 sub dl, 7  ; read from data port (ie. 0x1f0) 

 mov cx, 256 

 rep insw  ; gulp one 512b sector into edi 

 or dl, 7  ; "point" dx back at the status register 

 in al, dx  ; delay 400ns to allow drive to set new values of BSY and DRQ 

 in al, dx 

 in al, dx 

 in al, dx 

  

; After each DRQ data block it is mandatory to either: 

; receive and ack the IRQ -- or poll the status port all over again 

  

 inc ebp   ; increment the current absolute LBA (overflowing is OK!) 

 dec ebx   ; decrement the "sectors to read" count 

 test bx, bx  ; check if "sectorcount" just decremented to 0 

 jne short .pior_l 

  

 sub dx, 7  ; "point" dx back at the base IO port, so it's unchanged 

 sub ebp, [esi + dd_stLBA] ; convert absolute lba back to relative 

; this sub handles the >32bit overflow cases correcty, too 

; "test" sets the zero flag for a "success" return -- also clears the carry flag 

 test al, 0x21  ; test the last status ERR bits 

 je short .done 

.fail: 

 stc 

.done: 

 ret 

  

  

; do a singletasking PIO ata "software reset" with DCR in dx 

srst_ata_st: 

 push eax 

 mov al, 4 

 out dx, al   ; do a "software reset" on the bus 

 xor eax, eax 

 out dx, al   ; reset the bus to normal operation 

 in al, dx   ; it might take 4 tries for status bits to reset 

 in al, dx   ; ie. do a 400ns delay 

 in al, dx 

 in al, dx 

.rdylp: 

 in al, dx 

 and al, 0xc0   ; check BSY and RDY 

 cmp al, 0x40   ; want BSY clear and RDY set 

 jne short .rdylp 

 pop eax 

 ret 

 


