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In the last post I said the fundamental axiom of OS behavior is that at any given time, exactly one and 

only one task is active on a CPU. But if there’s absolutely nothing to do, then what? 

It turns out that this situation is extremely common, and for most personal computers it’s actually the 

norm: an ocean of sleeping processes, all waiting on some condition to wake up, while nearly 100% of 

CPU time is going into the mythical “idle task.” In fact, if the CPU is consistently busy for a normal user, 

it’s often a misconfiguration, bug, or malware. 

Since we can’t violate our axiom, some task needs to be active on a CPU. First because it’s good design: it 

would be unwise to spread special cases all over the kernel checking whether there isin fact an active 

task. A design is far better when there are no exceptions. Whenever you write anif statement, Nyan Cat 

cries. And second, we need to do something with all those idle CPUs, lest they get spunky and, you 

know, create Skynet. 

So to keep design consistency and be one step ahead of the devil, OS developers create an idle 

task that gets scheduled to run when there’s no other work. We have seen in the Linux boot 

process that the idle task is process 0, a direct descendent of the very first instruction that runs when a 

computer is first turned on. It is initialized in rest_init, where init_idle_bootup_taskinitializes the 

idle scheduling class. 

Briefly, Linux supports different scheduling classes for things like real-time processes, regular user 

processes, and so on. When it’s time to choose a process to become the active task, these classes are 

queried in order of priority. That way, the nuclear reactor control code always gets to run before the 

web browser. Often, though, these classes return NULL, meaning they don’t have a suitable process to 

run – they’re all sleeping. But the idle scheduling class, which runs last, never fails: it always returns the 

idle task. 

That’s all good, but let’s get down to just what exactly this idle task is doing. So here iscpu_idle_loop, 

courtesy of open source: 

cpu_idle_loop 
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while (1) { 

    while(!!!!need_resched()) { 

        cpuidle_idle_call(); 

    } 

 

    /* 
      [Note: Switch to a different task. We will return to this loop when the 
      idle task is again selected to run.] 
    */ 
    schedule_preempt_disabled(); 

} 
 

I’ve omitted many details, and we’ll look at task switching closely later on, but if you read the code you’ll 

get the gist of it: as long as there’s no need to reschedule, meaning change the active task, stay idle. 

Measured in elapsed time, this loop and its cousins in other OSes are probably the most executed 

pieces of code in computing history. For Intel processors, staying idle traditionally meant running 

the halt instruction: 



native_halt 

1 

2 

3 

4 

static inlininlininlininlineeee void native_halnative_halnative_halnative_haltt

{ 

  asm volatile("hlt":::: :::: ::::"memory

} 
 

hlt stops code execution in the processor and puts it in a halted state. It’s weird to think that across 

the world millions and millions of Intel
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deeper sleep states for processors, which trade off less power consumption for longer wake

The kernel’s cpuidle subsystem

Now once we tell the CPU to halt, or sleep, we need to somehow bring it back to life. If you’ve read 
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out of its halted state and back into action. So putting this all together, here’s what your system mostly 

does as you read a fully rendered web page:

Other interrupts besides the timer interrupt also get the processor moving again. That’s what happens 

if you click on a web page, for example: your mouse issues an interrupt, its driver processes it, and 
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Other interrupts besides the timer interrupt also get the processor moving again. That’s what happens 

if you click on a web page, for example: your mouse issues an interrupt, its driver processes it, and 

need_resched() returns true, 



In this example the timer interrupt was programmed by the kernel to happen every 4 milliseconds (ms). 

This is the tick period. That means we get 250 ticks per second, so the

That’s a typical value for Linux running on Intel processors, with 100 Hz being another crowd favorite. 

This is defined in the CONFIG_HZ

Now that looks like an awful lot of pointless work for an
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valuable cycles from the host CPU.
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That’s enough idleness for one post. The kernel’s idle behavior is an important part of the OS puzzle, 
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In this example the timer interrupt was programmed by the kernel to happen every 4 milliseconds (ms). 

. That means we get 250 ticks per second, so the tick rateor

That’s a typical value for Linux running on Intel processors, with 100 Hz being another crowd favorite. 
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Now that looks like an awful lot of pointless work for an idle CPU, and it is. Without fresh input from the 

outside world, the CPU will remain stuck in this hellish nap getting woken up 250 times a second while 

battery is drained. If this is running in a virtual machine, we’re burning both power and 

valuable cycles from the host CPU. 

dynamic tick so that when the CPU is idle, the timer interrupt is 
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do (for example, a process might have a timer expiring in 5 seconds, so we must not sleep past that). 

 

one active process in a system, for example a long-running CPU

That’s nearly identical to an idle system: these diagrams remain about the same, just substitute the one 

process for the idle task and the pictures are accurate. In that case it’s still pointless to interrupt the 
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altogether. 
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In this example the timer interrupt was programmed by the kernel to happen every 4 milliseconds (ms). 
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do (for example, a process might have a timer expiring in 5 seconds, so we must not sleep past that). 
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That’s enough idleness for one post. The kernel’s idle behavior is an important part of the OS puzzle, 

’ll see, so this helps us build the picture of a running kernel. 


