
What Does an Idle CPU Do 

Gustavo Duarte, Oct 29th, 2014 

 

In the last post I said the fundamental axiom of OS behavior is that at any given time, exactly one and 

only one task is active on a CPU. But if there’s absolutely nothing to do, then what? 

It turns out that this situation is extremely common, and for most personal computers it’s actually the 

norm: an ocean of sleeping processes, all waiting on some condition to wake up, while nearly 100% of 

CPU time is going into the mythical “idle task.” In fact, if the CPU is consistently busy for a normal user, 

it’s often a misconfiguration, bug, or malware. 

Since we can’t violate our axiom, some task needs to be active on a CPU. First because it’s good design: it 

would be unwise to spread special cases all over the kernel checking whether there isin fact an active 

task. A design is far better when there are no exceptions. Whenever you write anif statement, Nyan Cat 

cries. And second, we need to do something with all those idle CPUs, lest they get spunky and, you 

know, create Skynet. 

So to keep design consistency and be one step ahead of the devil, OS developers create an idle 

task that gets scheduled to run when there’s no other work. We have seen in the Linux boot 

process that the idle task is process 0, a direct descendent of the very first instruction that runs when a 

computer is first turned on. It is initialized in rest_init, where init_idle_bootup_taskinitializes the 

idle scheduling class. 

Briefly, Linux supports different scheduling classes for things like real-time processes, regular user 

processes, and so on. When it’s time to choose a process to become the active task, these classes are 

queried in order of priority. That way, the nuclear reactor control code always gets to run before the 

web browser. Often, though, these classes return NULL, meaning they don’t have a suitable process to 

run – they’re all sleeping. But the idle scheduling class, which runs last, never fails: it always returns the 

idle task. 

That’s all good, but let’s get down to just what exactly this idle task is doing. So here iscpu_idle_loop, 

courtesy of open source: 

cpu_idle_loop 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

while (1) { 

    while(!!!!need_resched()) { 

        cpuidle_idle_call(); 

    } 

 

    /* 
      [Note: Switch to a different task. We will return to this loop when the 
      idle task is again selected to run.] 
    */ 
    schedule_preempt_disabled(); 

} 
 

I’ve omitted many details, and we’ll look at task switching closely later on, but if you read the code you’ll 

get the gist of it: as long as there’s no need to reschedule, meaning change the active task, stay idle. 

Measured in elapsed time, this loop and its cousins in other OSes are probably the most executed 

pieces of code in computing history. For Intel processors, staying idle traditionally meant running 

the halt instruction: 



native_halt 

1 

2 

3 

4 

static inlininlininlininlineeee void native_halnative_halnative_halnative_haltt

{ 

  asm volatile("hlt":::: :::: ::::"memory

} 
 

hlt stops code execution in the processor and puts it in a halted state. It’s weird to think that across 

the world millions and millions of Intel

while they’re powered up. It’s also not terribly ef

deeper sleep states for processors, which trade off less power consumption for longer wake

The kernel’s cpuidle subsystem

Now once we tell the CPU to halt, or sleep, we need to somehow bring it back to life. If you’ve read 

the last post, you might suspect

out of its halted state and back into action. So putting this all together, here’s what your system mostly 

does as you read a fully rendered web page:

Other interrupts besides the timer interrupt also get the processor moving again. That’s what happens 

if you click on a web page, for example: your mouse issues an interrupt, its driver processes it, and 

suddenly a process is runnable because it has fresh input. At that poin

and the idle task is booted out in favor of your browser.

But let’s stick to idleness in this post. Here’s the idle loop over time:

tttt(void) 

"memory"); 

stops code execution in the processor and puts it in a halted state. It’s weird to think that across 

the world millions and millions of Intel-like CPUs are spending the majority of their time halted, even 

while they’re powered up. It’s also not terribly efficient, energy wise, which led chip makers to develop 

deeper sleep states for processors, which trade off less power consumption for longer wake

cpuidle subsystem is responsible for taking advantage of these power

Now once we tell the CPU to halt, or sleep, we need to somehow bring it back to life. If you’ve read 

, you might suspect interrupts are involved, and indeed they are. Interrupts spur the CPU 

out of its halted state and back into action. So putting this all together, here’s what your system mostly 

does as you read a fully rendered web page: 

Other interrupts besides the timer interrupt also get the processor moving again. That’s what happens 

if you click on a web page, for example: your mouse issues an interrupt, its driver processes it, and 

ocess is runnable because it has fresh input. At that pointneed_resched()

and the idle task is booted out in favor of your browser. 

But let’s stick to idleness in this post. Here’s the idle loop over time: 

stops code execution in the processor and puts it in a halted state. It’s weird to think that across 

like CPUs are spending the majority of their time halted, even 

ficient, energy wise, which led chip makers to develop 

deeper sleep states for processors, which trade off less power consumption for longer wake-up latency. 

taking advantage of these power-saving modes. 

Now once we tell the CPU to halt, or sleep, we need to somehow bring it back to life. If you’ve read 

are involved, and indeed they are. Interrupts spur the CPU 

out of its halted state and back into action. So putting this all together, here’s what your system mostly 

 

Other interrupts besides the timer interrupt also get the processor moving again. That’s what happens 

if you click on a web page, for example: your mouse issues an interrupt, its driver processes it, and 

need_resched() returns true, 



In this example the timer interrupt was programmed by the kernel to happen every 4 milliseconds (ms). 

This is the tick period. That means we get 250 ticks per second, so the

That’s a typical value for Linux running on Intel processors, with 100 Hz being another crowd favorite. 

This is defined in the CONFIG_HZ

Now that looks like an awful lot of pointless work for an

outside world, the CPU will remain stuck in this hellish nap getting woken up 250 times a second while 

your laptop battery is drained. If this is running in a virtual machine, we’re burning both power and 

valuable cycles from the host CPU.

The solution here is to have a dynamic tick

either deactivated or reprogrammed

do (for example, a process might have a timer expiring in 5 seconds, so we must not sleep past that). 

This is also called tickless mode. 

Finally, suppose you have one active process

That’s nearly identical to an idle system: these diagrams remain about the same, just substitute the one 

process for the idle task and the pictures are accurate. In that case it’s still pointless to interrupt the 

task every 4 ms for no good reason: it’s

also stop the fixed-rate tick in this one

a fixed-rate tick may be gone altogether

That’s enough idleness for one post. The kernel’s idle behavior is an important part of the OS puzzle, 

and it’s very similar to other situations we

More next week, RSS and Twitter

 

In this example the timer interrupt was programmed by the kernel to happen every 4 milliseconds (ms). 

. That means we get 250 ticks per second, so the tick rateor

That’s a typical value for Linux running on Intel processors, with 100 Hz being another crowd favorite. 

CONFIG_HZ option when you build the kernel. 

Now that looks like an awful lot of pointless work for an idle CPU, and it is. Without fresh input from the 

outside world, the CPU will remain stuck in this hellish nap getting woken up 250 times a second while 

battery is drained. If this is running in a virtual machine, we’re burning both power and 

valuable cycles from the host CPU. 

dynamic tick so that when the CPU is idle, the timer interrupt is 

deactivated or reprogrammed to happen at a point where the kernel knows

do (for example, a process might have a timer expiring in 5 seconds, so we must not sleep past that). 

 

one active process in a system, for example a long-running CPU

That’s nearly identical to an idle system: these diagrams remain about the same, just substitute the one 

process for the idle task and the pictures are accurate. In that case it’s still pointless to interrupt the 

task every 4 ms for no good reason: it’s merely OS jitter slowing your work ever so slightly. Linux can 

rate tick in this one-process scenario, in what’s called adaptive

altogether. 

That’s enough idleness for one post. The kernel’s idle behavior is an important part of the OS puzzle, 

and it’s very similar to other situations we’ll see, so this helps us build the picture of a running kernel. 

Twitter. 

 

In this example the timer interrupt was programmed by the kernel to happen every 4 milliseconds (ms). 

or tick frequency is 250 Hz. 

That’s a typical value for Linux running on Intel processors, with 100 Hz being another crowd favorite. 

, and it is. Without fresh input from the 

outside world, the CPU will remain stuck in this hellish nap getting woken up 250 times a second while 

battery is drained. If this is running in a virtual machine, we’re burning both power and 

so that when the CPU is idle, the timer interrupt is 

knows there will be work to 

do (for example, a process might have a timer expiring in 5 seconds, so we must not sleep past that). 

running CPU-intensive task. 

That’s nearly identical to an idle system: these diagrams remain about the same, just substitute the one 

process for the idle task and the pictures are accurate. In that case it’s still pointless to interrupt the 

merely OS jitter slowing your work ever so slightly. Linux can 

adaptive-tick mode. Eventually, 

That’s enough idleness for one post. The kernel’s idle behavior is an important part of the OS puzzle, 

’ll see, so this helps us build the picture of a running kernel. 


