
CPU Rings, Privilege, and Protection 

Gustavo Duarte, Aug 20th, 2008 
 
You probably know intuitively that applications have limited powers in Intel x86 computers 

and that only operating system code can perform certain tasks, but do you know how this 

really works? This post takes a look at x86 privilege levels, the mechanism whereby the OS 

and CPU conspire to restrict what user-mode programs can do. There are four privilege levels, 

numbered 0 (most privileged) to 3 (least privileged), and three main resources being 

protected: memory, I/O ports, and the ability to execute certain machine instructions. At any 

given time, an x86 CPU is running in a specific privilege level, which determines what code can 

and cannot do. These privilege levels are often described as protection rings, with the 

innermost ring corresponding to highest privilege. Most modern x86 kernels use only two 

privilege levels, 0 and 3: 

 
x86 Protection Rings 

About 15 machine instructions, out of dozens, are restricted by the CPU to ring zero. Many 

others have limitations on their operands. These instructions can subvert the protection 

mechanism or otherwise foment chaos if allowed in user mode, so they are reserved to the 

kernel. An attempt to run them outside of ring zero causes a general-protection exception, 

like when a program uses invalid memory addresses. Likewise, access to memory and I/O 

ports is restricted based on privilege level. But before we look at protection mechanisms, let’s 

seeexactly how the CPU keeps track of the current privilege level, which involves the segment 

selectors from the previous post. Here they are: 



 
Segment Selectors – Data and Code 

The full contents of data segment selectors are loaded directly by code into various segment 

registers such as ss (stack segment register) and ds (data segment register). This includes the 

contents of the Requested Privilege Level (RPL) field, whose meaning we tackle in a bit. The 

code segment register (cs) is, however, magical. First, its contents cannot be set directly by 

load instructions such as mov, but rather only by instructions that alter the flow of program 

execution, like call. Second, and importantly for us, instead of an RPL field that can be set by 

code, cs has a Current Privilege Level (CPL) field maintained by the CPU itself. This 2-bit CPL 

field in the code segment register is always equal to the CPU’s current privilege level. The 

Intel docs wobble a little on this fact, and sometimes online documents confuse the issue, but 

that’s the hard and fast rule. At any time, no matter what’s going on in the CPU, a look at the 

CPL in cs will tell you the privilege level code is running with. 

Keep in mind that the CPU privilege level has nothing to do with operating system users. 

Whether you’re root, Administrator, guest, or a regular user, it does not matter. All user code 

runs in ring 3 and all kernel code runs in ring 0, regardless of the OS user on whose behalf 

the code operates. Sometimes certain kernel tasks can be pushed to user mode, for example 

user-mode device drivers in Windows Vista, but these are just special processes doing a job 

for the kernel and can usually be killed without major consequences. 

Due to restricted access to memory and I/O ports, user mode can do almost nothing to the 

outside world without calling on the kernel. It can’t open files, send network packets, print to 

the screen, or allocate memory. User processes run in a severely limited sandbox set up by 

the gods of ring zero. That’s why it’s impossible, by design, for a process to leak memory 

beyond its existence or leave open files after it exits. All of the data structures that control 

such things – memory, open files, etc – cannot be touched directly by user code; once a 

process finishes, the sandbox is torn down by the kernel. That’s why our servers can have 600 

days of uptime – as long as the hardware and the kernel don’t crap out, stuff can run for ever. 

This is also why Windows 95 / 98 crashed so much: it’s not because “M$ sucks” but because 

important data structures were left accessible to user mode for compatibility reasons. It was 

probably a good trade-off at the time, albeit at high cost. 

The CPU protects memory at two crucial points: when a segment selector is loaded and when 

a page of memory is accessed with a linear address. Protection thus mirrors memory address 

translation where both segmentation and paging are involved. When a data segment selector 

is being loaded, the check below takes place: 



 
x86 Segment Protection 

Since a higher number means less privilege, MAX() above picks the least privileged of CPL and 

RPL, and compares it to the descriptor privilege level (DPL). If the DPL is higher or equal, then 

access is allowed. The idea behind RPL is to allow kernel code to load a segment using 

lowered privilege. For example, you could use an RPL of 3 to ensure that a given operation 

uses segments accessible to user-mode. The exception is for the stack segment register ss, for 

which the three of CPL, RPL, and DPL must match exactly. 

In truth, segment protection scarcely matters because modern kernels use a flat address 

space where the user-mode segments can reach the entire linear address space. Useful 

memory protection is done in the paging unit when a linear address is converted into a 

physical address. Each memory page is a block of bytes described by a page table 

entry containing two fields related to protection: a supervisor flag and a read/write flag. The 

supervisor flag is the primary x86 memory protection mechanism used by kernels. When it is 

on, the page cannot be accessed from ring 3. While the read/write flag isn’t as important for 

enforcing privilege, it’s still useful. When a process is loaded, pages storing binary images 

(code) are marked as read only, thereby catching some pointer errors if a program attempts 

to write to these pages. This flag is also used to implement copy on write when a process is 

forked in Unix. Upon forking, the parent’s pages are marked read only and shared with the 

forked child. If either process attempts to write to the page, the processor triggers a fault and 

the kernel knows to duplicate the page and mark it read/write for the writing process. 

Finally, we need a way for the CPU to switch between privilege levels. If ring 3 code could 

transfer control to arbitrary spots in the kernel, it would be easy to subvert the operating 

system by jumping into the wrong (right?) places. A controlled transfer is necessary. This is 

accomplished via gate descriptors and via the sysenter instruction. A gate descriptor is a 

segment descriptor of type system, and comes in four sub-types: call-gate descriptor, 

interrupt-gate descriptor, trap-gate descriptor, and task-gate descriptor. Call gates provide a 

kernel entry point that can be used with ordinary call and jmp instructions, but they aren’t 

used much so I’ll ignore them. Task gates aren’t so hot either (in Linux, they are only used in 

double faults, which are caused by either kernel or hardware problems). 



That leaves two juicier ones: interrupt and trap gates, which are used to handle hardware 

interrupts (e.g., keyboard, timer, disks) and exceptions (e.g., page faults, divide by zero). I’ll 

refer to both as an “interrupt”. These gate descriptors are stored in the Interrupt Descriptor 

Table(IDT). Each interrupt is assigned a number between 0 and 255 called a vector, which the 

processor uses as an index into the IDT when figuring out which gate descriptor to use when 

handling the interrupt. Interrupt and trap gates are nearly identical. Their format is shown 

below along with the privilege checks enforced when an interrupt happens. I filled in some 

values for the Linux kernel to make things concrete. 

 

Interrupt Descriptor with Privilege Check 

Both the DPL and the segment selector in the gate regulate access, while segment selector 

plus offset together nail down an entry point for the interrupt handler code. Kernels normally 

use the segment selector for the kernel code segment in these gate descriptors. An interrupt 

cannever transfer control from a more-privileged to a less-privileged ring. Privilege must 

either stay the same (when the kernel itself is interrupted) or be elevated (when user-mode 

code is interrupted). In either case, the resulting CPL will be equal to to the DPL of the 

destination code segment; if the CPL changes, a stack switch also occurs. If an interrupt is 

triggered by code via an instruction like int n, one more check takes place: the gate DPL must 

be at the same or lower privilege as the CPL. This prevents user code from triggering random 

interrupts. If these checks fail – you guessed it – a general-protection exception happens. All 

Linux interrupt handlers end up running in ring zero. 



During initialization, the Linux kernel first sets up an IDT in setup_idt() that ignores all 

interrupts. It then uses functions in include/asm-x86/desc.h to flesh out common IDT entries 

inarch/x86/kernel/traps_32.c. In Linux, a gate descriptor with “system” in its name is accessible 

from user mode and its set function uses a DPL of 3. A “system gate” is an Intel trap gate 

accessible to user mode. Otherwise, the terminology matches up. Hardware interrupt gates 

are not set here however, but instead in the appropriate drivers. 

Three gates are accessible to user mode: vectors 3 and 4 are used for debugging and checking 

for numeric overflows, respectively. Then a system gate is set up for the SYSCALL_VECTOR, 

which is 0x80 for the x86 architecture. This was the mechanism for a process to transfer 

control to the kernel, to make a system call, and back in the day I applied for an “int 0x80” 

vanity license plate :). Starting with the Pentium Pro, the sysenter instruction was introduced 

as a faster way to make system calls. It relies on special-purpose CPU registers that store the 

code segment, entry point, and other tidbits for the kernel system call handler. When sysenter 

is executed the CPU does no privilege checking, going immediately into CPL 0 and loading new 

values into the registers for code and stack (cs, eip, ss, and esp). Only ring zero can load the 

sysenter setup registers, which is done in enable_sep_cpu(). 

Finally, when it’s time to return to ring 3, the kernel issues an iret or sysexit instruction to 

return from interrupts and system calls, respectively, thus leaving ring 0 and resuming 

execution of user code with a CPL of 3. Vim tells me I’m approaching 1,900 words, so I/O port 

protection is for another day. This concludes our tour of x86 rings and protection. Thanks for 

reading! 

 


