
INT 15h, AX=E820h - Query System Address Map

Real mode only.

This call returns a memory map of all the installed RAM, and of physical memory ranges reserved

by the BIOS. The address map is returned by making successive calls to this API, each returning

one "run" of physical address information. Each run has a type which dictates how this run of

physical address range should be treated by the operating system.

If the information returned from INT 15h, AX=E820h in some way differs from INT 15h,

AX=E801h or INT 15h AH=88h, then the information returned from E820h supersedes what is

returned from these older interfaces. This allows the BIOS to return whatever information it wishes

to for compatibility reasons.

Input:
 EAX Function Code E820h

 EBX Continuation Contains the "continuation value" to get the

 next run of physical memory. This is the

 value returned by a previous call to this

 routine. If this is the first call, EBX

 must contain zero.

 ES:DI Buffer Pointer Pointer to an Address Range Descriptor

 structure which the BIOS is to fill in.

 ECX Buffer Size The length in bytes of the structure passed

 to the BIOS. The BIOS will fill in at most

 ECX bytes of the structure or however much

 of the structure the BIOS implements. The

 minimum size which must be supported by both

 the BIOS and the caller is 20 bytes. Future

 implementations may extend this structure.

 EDX Signature 'SMAP' - Used by the BIOS to verify the

 caller is requesting the system map

 information to be returned in ES:DI.

Output:
 CF Carry Flag Non-Carry - indicates no error

 EAX Signature 'SMAP' - Signature to verify correct BIOS

 revision.

 ES:DI Buffer Pointer Returned Address Range Descriptor pointer.

 Same value as on input.

 ECX Buffer Size Number of bytes returned by the BIOS in the

 address range descriptor. The minimum size

 structure returned by the BIOS is 20 bytes.

 EBX Continuation Contains the continuation value to get the

 next address descriptor. The actual

 significance of the continuation value is up

 to the discretion of the BIOS. The caller

 must pass the continuation value unchanged

 as input to the next iteration of the E820

 call in order to get the next Address Range

 Descriptor. A return value of zero means that

 this is the last descriptor. Note that the

 BIOS indicate that the last valid descriptor

 has been returned by either returning a zero

 as the continuation value, or by returning

 carry.

file:///C:/Users/erdogan.tan/Desktop/INT%2015h,%20AX=E820h%20-%20Query%20System%20Address%20Map_files/INT%2015h,%20AX=E820h%20-%20Query%20System%20Address%20Map.html
file:///C:/Users/erdogan.tan/Desktop/INT%2015h,%20AX=E820h%20-%20Query%20System%20Address%20Map_files/INT%2015h,%20AX=E820h%20-%20Query%20System%20Address%20Map.html
http://www.uruk.org/orig-grub/mem64mb.html#int1588

Address Range Descriptor Structure

Offset in Bytes Name Description

 0 BaseAddrLow Low 32 Bits of Base Address

 4 BaseAddrHigh High 32 Bits of Base Address

 8 LengthLow Low 32 Bits of Length in Bytes

 12 LengthHigh High 32 Bits of Length in Bytes

 16 Type Address type of this range.

The BaseAddrLow and BaseAddrHigh together are the 64 bit BaseAddress of this range. The

BaseAddress is the physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64 bit Length of this range. The Length is the

physical contiguous length in bytes of a range being specified.

The Type field describes the usage of the described address range as defined in the table below.

Value Pneumonic Description

1 AddressRangeMemory This run is available RAM usable by the

 operating system.

2 AddressRangeReserved This run of addresses is in use or reserved

 by the system, and must not be used by the

 operating system.

Other Undefined Undefined - Reserved for future use. Any

 range of this type must be treated by the

 OS as if the type returned was

 AddressRangeReserved.

The BIOS can use the AddressRangeReserved address range type to block out various addresses as

"not suitable" for use by a programmable device.

Some of the reasons a BIOS would do this are:

 The address range contains system ROM.

 The address range contains RAM in use by the ROM.

 The address range is in use by a memory mapped system device.

 The address range is for whatever reason are unsuitable for a standard device to use as a

device memory space.

Assumptions and Limitations

 1. The BIOS will return address ranges describing base board memory and ISA or PCI memory that

is contiguous with that baseboard memory.

 2. The BIOS WILL NOT return a range description for the memory mapping of PCI devices, ISA

Option ROM's, and ISA plug & play cards. This is because the OS has mechanisms available to

detect them.

 3. The BIOS will return chipset defined address holes that are not being used by devices as reserved.

 4. Address ranges defined for base board memory mapped I/O devices (for example APICs) will be

returned as reserved.

 5. All occurrences of the system BIOS will be mapped as reserved. This includes the area below 1

MB, at 16 MB (if present) and at end of the address space (4 gig).

 6. Standard PC address ranges will not be reported. Example video memory at A0000 to BFFFF

physical will not be described by this function. The range from E0000 to EFFFF is base board

specific and will be reported as suits the bas board.

 7. All of lower memory is reported as normal memory. It is OS's responsibility to handle standard

RAM locations reserved for specific uses, for example: the interrupt vector table(0:0) and the BIOS

data area(40:0).

Example address map

This sample address map describes a machine which has 128 MB RAM, 640K of base memory and 127 MB

extended. The base memory has 639K available for the user and 1K for an extended BIOS data area. There is

a 4 MB Linear Frame Buffer (LFB) based at 12 MB. The memory hole created by the chipset is from 8 M to

16 M. There are memory mapped APIC devices in the system. The IO Unit is at FEC00000 and the Local

Unit is at FEE00000. The system BIOS is remapped to 4G - 64K.

Note that the 639K endpoint of the first memory range is also the base memory size reported in the BIOS

data segment at 40:13.

Key to types: "ARM" is AddressRangeMemory, "ARR" is AddressRangeReserved.

Base (Hex) Length Type Description

0000 0000 639K ARM Available Base memory - typically the same

 value as is returned via the INT 12 function.

0009 FC00 1K ARR Memory reserved for use by the BIOS(s).

 This area typically includes the Extended

 BIOS data area.

000F 0000 64K ARR System BIOS

0010 0000 7M ARM Extended memory, this is not limited to

 the 64 MB address range.

0080 0000 8M ARR Chipset memory hole required to support the

 LFB mapping at 12 MB.

0100 0000 120M ARM Base board RAM relocated above a chipset

 memory hole.

FEC0 0000 4K ARR IO APIC memory mapped I/O at FEC00000. Note

 the range of addresses required for an APIC

 device may vary from base OEM to OEM.

FEE0 0000 4K ARR Local APIC memory mapped I/O at FEE00000.

FFFF 0000 64K ARR Remapped System BIOS at end of address space.

Sample operating system usage

The following code segment is intended to describe the algorithm needed when calling the Query System

Address Map function. It is an implementation example and uses non standard mechanisms.
 E820Present = FALSE;

 Regs.ebx = 0;

 do {

 Regs.eax = 0xE820;

 Regs.es = SEGMENT (&Descriptor);

 Regs.di = OFFSET (&Descriptor);

 Regs.ecx = sizeof (Descriptor);

 Regs.edx = 'SMAP';

 _int(0x15, Regs);

 if ((Regs.eflags & EFLAG_CARRY) || Regs.eax != 'SMAP') {

 break;

 }

 if (Regs.ecx < 20 || Regs.ecx > sizeof (Descriptor)) {

 // bug in bios - all returned descriptors must be

 // at least 20 bytes long, and can not be larger then

 // the input buffer.

 break;

 }

 E820Present = TRUE;

 .

 .

 .

 Add address range Descriptor.BaseAddress through

 Descriptor.BaseAddress + Descriptor.Length

 as type Descriptor.Type

 .

 .

 .

 } while (Regs.ebx != 0);

 if (!E820Present) {

 .

 .

 .

 call INT 15h, AX=E801h and/or INT 15h, AH=88h to obtain old style

 memory information

 .

 .

 .

 }

INT 15h, AX=E801h - Get Memory Size for Large Configurations

Real mode only (as far as I know).

Originally defined for EISA servers, this interface is capable of reporting up to 4 GB of RAM.

While not nearly as flexible as E820h, it is present in many more systems.

Input:

 AX Function Code E801h

Output:
 CF Carry Flag Non-Carry - indicates no error

 AX Extended 1 Number of contiguous KB between 1 and 16 MB,

 maximum 0x3C00 = 15 MB.

 BX Extended 2 Number of contiguous 64 KB blocks between

 16 MB and 4 GB.

 CX Configured 1 Number of contiguous KB between 1 and 16 MB,

 maximum 0x3C00 = 15 MB.

 DX Configured 2 Number of contiguous 64 KB blocks between

 16 MB and 4 GB.

Not sure what this difference between the "Extended" and "Configured" numbers are, but they

appear to be identical, as reported from the BIOS.

NOTE: It is possible for a machine using this interface to report a memory hole just under 16 MB

(Count 1 is less than 15 MB, but Count 2 is non-zero).

INT 15h, AH=88h - Get Extended Memory Size

Real mode only.

This interface is quite primitive. It returns a single value for contiguous memory above 1 MB. The

biggest limitation is that the value returned is a 16-bit value, in KB, so it has a maximum saturation

of just under 64 MB even presuming it returns as much as it can. On some systems, it won't return

anything above the 16 MB boundary.

The one useful point is that it works on every PC available.

Input:

 AH Function Code 88h

Output:
 CF Carry Flag Non-Carry - indicates no error

 AX Memory Count Number of contiguous KB above 1 MB.

erich@uruk.org

mailto:erich@uruk.org

