
1

A Real Problem

 What if you wanted to run a program that needs more memory than you
have?

2

Virtual Memory (and Indirection)

 Virtual Memory
— We’ll talk about the motivations for virtual memory
— We’ll talk about how it is implemented
— Lastly, we’ll talk about how to make virtual memory fast: Translation

Lookaside Buffers (TLBs).

3

A Real Problem

 What if you wanted to run a program that needs more memory than you
have?
— You could store the whole program on disk, and use memory as a

cache for the data on disk. This is one feature of virtual memory.
— Before virtual memory, programmers had to manually manage

loading “overlays” (chunks of instructions & data) off disk before
they were used. This is an incredibly tedious, not to mention error-
prone, process.

4

More Real Problems

 Running multiple programs at the same time brings up more problems.

1. Even if each program fits in memory, running 10 programs might not.

2. Multiple programs may want to store something at the same address.

3. How do we protect one program’s data from being read or written by
another program?

5

More Real Problems

 Running multiple programs at the same time brings up more problems.

1. Even if each program fits in memory, running 10 programs might not.
– This is really the same problem as on the previous slide.

2. Multiple programs may want to store something at the same address.
– I.e., what if both Program A and B want to use address 0x10000000

as the base of their stack?
– It is impractical (if not impossible) to compile every pair of programs

that could get executed together to use distinct sets of addresses.

3. How do we protect one program’s data from being read or written by
another program?

6

Virtual Memory

 We translate “virtual addresses” used by the program to “physical
addresses” that represent places in the machine’s “physical” memory.
— The word “translate” denotes a level of indirection

Vi
rt

ua
l A

dd
re

ss

Physical
Memory

Disk

A virtual address can be
mapped to either physical
memory or disk.

7

Virtual Memory

 Because different processes will have different mappings from virtual to
physical addresses, two programs can freely use the same virtual
address.

 By allocating distinct regions of physical memory to A and B, they are
prevented from reading/writing each others data.

Vi
rt

ua
l A

dd
re

ss

Physical
Memory

Disk

Virtual Address
Program A Program B

8

Caching revisited

 Once the translation infrastructure is in place, the problem boils down to
caching.
— We want the size of disk, but the performance of memory.

 The design of virtual memory systems is really motivated by the high cost
of accessing disk.
— While memory latency is ~100 times that of cache, disk latency is

~100,000 times that of memory.

 Hence, we try to minimize the miss rate:
— VM “pages” are much larger than cache blocks. Why?
— A fully associative policy is used.

• With approximate LRU

 Should a write-through or write-back policy be used?

9

Finding the right page

 If it is fully associative, how to we find the right page without scanning
all of memory?

10

Finding the right page

 If it is fully associative, how do we find the right page without scanning
all of memory?
— Use an index, just like you would for a book.

 Our index happens to be called the page table:
— Each process has a separate page table

• A “page table register” points to the current process’s page table
— The page table is indexed with the virtual page number (VPN)

• The VPN is all of the bits that aren’t part of the page offset.
— Each entry contains a valid bit, and a physical page number (PPN)

• The PPN is concatenated with the page offset to get the physical
address

— No tag is needed because the index is the full VPN.

11

Page Table picture

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

12

How big is the page table?

 From the previous slide:
— Virtual page number is 20 bits.
— Physical page number is 18 bits + valid bit -> round up to 32 bits.

 How about for a 64b architecture?

13

Dealing with large page tables

 Multi-level page tables
— “Any problem in CS can be solved by adding a level of indirection”

or two…

 Since most processes don’t use the whole address space, you don’t
allocate the tables that aren’t needed
— Also, the 2nd and 3rd level page tables can be “paged” to disk.

VPN1 VPN2 VPN3 offset

Page Table
Base Pointer

PPN

PPN offset

1st
2nd

3rd

A 3-level page table

14

15

Waitaminute!

 We’ve just replaced every memory access MEM[addr] with:

MEM[MEM[MEM[MEM[PTBR + VPN1<<2] + VPN2<<2] + VPN3<<2] + offset]

— i.e., 4 memory accesses

 And we haven’t talked about the bad case yet (i.e., page faults)…

“Any problem in CS can be solved by adding a level of indirection”
— except too many levels of indirection…

 How do we deal with too many levels of indirection?

16

Caching Translations

 Virtual to Physical translations are cached in a Translation Lookaside
Buffer (TLB).

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

17

What about a TLB miss?

 If we miss in the TLB, we need to “walk the page table”
— In MIPS, an exception is raised and software fills the TLB
— In x86, a “hardware page table walker” fills the TLB

 What if the page is not in memory?
— This situation is called a page fault.
— The operating system will have to request the page from disk.
— It will need to select a page to replace.

• The O/S tries to approximate LRU (see CS423)
— The replaced page will need to be written back if dirty.

18

Memory Protection

 In order to prevent one process from reading/writing another process’s
memory, we must ensure that a process cannot change its virtual-to-
physical translations.

 Typically, this is done by:
— Having two processor modes: user & kernel.

• Only the O/S runs in kernel mode
— Only allowing kernel mode to write to the virtual memory state, e.g.,

• The page table
• The page table base pointer
• The TLB

19

Sharing Memory

 Paged virtual memory enables sharing at the granularity of a page, by
allowing two page tables to point to the same physical addresses.

 For example, if you run two copies of a program, the O/S will share the
code pages between the programs.

Vi
rt

ua
l A

dd
re

ss

Physical
Memory

Disk

Virtual Address
Program A Program B

20

Summary

 Virtual memory is great:
— It means that we don’t have to manage our own memory.
— It allows different programs to use the same memory.
— It provides protect between different processes.
— It allows controlled sharing between processes (albeit somewhat

inflexibly).
 The key technique is indirection:

— Yet another classic CS trick you’ve seen in this class.
— Many problems can be solved with indirection.

 Caching made a few appearances, too:
— Virtual memory enables using physical memory as a cache for disk.
— We used caching (in the form of the Translation Lookaside Buffer) to

make Virtual Memory’s indirection fast.

