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Atomic Operations in Hardware

 Previously, we introduced multi-core parallelism.
— Today we’ll look at instruction support for synchronization.
— And some pitfalls of parallelization.
— And solve a few mysteries.

AMD dual-core Opteron

©2006 Craig Zilles
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A simple piece of code

unsigned counter = 0;

void *do_stuff(void * arg) {
  for (int i = 0 ; i < 200000000 ; ++ i) {
     counter ++;
  }
  return arg;
}

How long does this program take?

How can we make it faster?

adds one to counter
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A simple piece of code

unsigned counter = 0;

void *do_stuff(void * arg) {
  for (int i = 0 ; i < 200000000 ; ++ i) {
     counter ++;
  }
  return arg;
}

How long does this program take? Time for 200000000 iterations

How can we make it faster? Run iterations in parallel

adds one to counter
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unsigned counter = 0;

void *do_stuff(void * arg) {
  for (int i = 0 ; i < 200000000 ; ++ i) {
     counter ++;
  }
  return arg;
}

Exploiting a multi-core processor

#1 #2

Split for-loop across
multiple threads running
on separate cores
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How much faster?
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How much faster?

 We’re expecting a speedup of 2

 OK, perhaps a little less because of Amdahl’s Law
— overhead for forking and joining multiple threads

 But its actually slower!! Why??

 Here’s the mental picture that we have – two processors, shared memory

counter

shared variable in memory
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This mental picture is wrong!

 We’ve forgotten about caches!
— The memory may be shared, but each processor has its own L1 cache
— As each processor updates counter, it bounces between L1 caches

Multiple bouncing
slows performance
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The code is not only slow, its WRONG!

 Since the variable counter is shared, we can get a data race

 Increment operation: counter++     MIPS equivalent:

 A data race occurs when data is accessed and manipulated by multiple
processors, and the outcome depends on the sequence or timing of these
events.

Sequence 1   Sequence 2
Processor 1 Processor 2   Processor 1     Processor 2
lw   $t0, counter   lw   $t0, counter
addi $t0, $t0, 1   lw   $t0, counter
sw   $t0, counter   addi $t0, $t0, 1

lw   $t0, counter   addi $t0, $t0, 1
addi $t0, $t0, 1   sw   $t0, counter
sw   $t0, counter   sw   $t0, counter

counter increases by 2     counter increases by 1 !!

lw   $t0, counter
addi $t0, $t0, 1
sw   $t0, counter
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What is the minimum value at the end of the program?
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Atomic operations

 You can show that if the sequence is particularly nasty, the final value of
counter may be as little as 2, instead of 200000000.

 To fix this, we must do the load-add-store in a single step
— We call this an atomic operation
— We’re saying: “Do this, and don’t get interrupted while doing this.”

 “Atomic” in this context means “all or nothing”
— either we succeed in completing the operation with no interruptions

or we fail to even begin the operation (because someone else was
doing an atomic operation)

— We really mean “atomic” AND “isolated” from other threads.

 x86 provides a “lock” prefix that tells the hardware:
“don’t let anyone read/write the value until I’m done with it”
— Not the default case (because it is slow!)
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What if we want to generalize beyond increments?

 The lock prefix only works for individual x86 instructions.
 What if we want to execute an arbitrary region of code without

interference?
— Consider a red-black tree used by multiple threads.
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What if we want to generalize beyond increments?

 The lock prefix only works for individual x86 instructions.
 What if we want to execute an arbitrary region of code without

interference?
— Consider a red-black tree used by multiple threads.

 Best mainstream solution: Locks
— Implements mutual exclusion

• You can’t have it if I have it, I can’t have it if you have it
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What if we want to generalize beyond increments?

 The lock prefix only works for individual x86 instructions.
 What if we want to execute an arbitrary region of code without

interference?
— Consider a red-black tree used by multiple threads.

 Best mainstream solution: Locks
— Implement “mutual exclusion”

• You can’t have it if I have, I can’t have it if you have it

when lock = 0, set lock = 1, continue

lock = 0
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Lock acquire code

High-level version MIPS version

unsigned lock = 0;

while (1) {
if (lock == 0) {

lock = 1;
break;

}
}

 What problem do you see with this?

spin: lw $t0, 0($a0)
bne $t0, 0, spin
li $t1, 1
sw $t1, 0($a0)
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Race condition in lock-acquire

spin: lw $t0, 0($a0)
bne $t0, 0, spin
li $t1, 1
sw $t1, 0($a0)
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Doing “lock acquire” atomically

 Make sure no one gets between load and store

 Common primitive: compare-and-swap (old, new, addr)
— If the value in memory matches “old”, write “new” into memory

temp = *addr;
if (temp == old) {

*addr = new;
} else {

old = temp;
}

 x86 calls it CMPXCHG (compare-exchange)
— Use the lock prefix to guarantee itʼs atomicity
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Using CAS to implement locks

 Acquiring the lock:
lock_acquire:

li  $t0, 0   # old
li  $t1, 1   # new
cas $t0, $t1, lock
beq $t0, $t1, lock_acquire  # failed, try again

 Releasing the lock:
sw  $t0, lock
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Conclusions

 When parallel threads access the same data, potential for data races
— Even true on uniprocessors due to context switching

 We can prevent data races by enforcing mutual exclusion
— Allowing only one thread to access the data at a time
— For the duration of a critical section

 Mutual exclusion can be enforced by locks
— Programmer allocates a variable to “protect” shared data
— Program must perform: 0 → 1 transition before data access
—                                    1 → 0 transition after

 Locks can be implemented with atomic operations
— (hardware instructions that enforce mutual exclusion on 1 data item)
— compare-and-swap

• If address holds “old”, replace with “new”


