
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

Introduction

1
 COMP3361 Winter 2015

!  Operating Systems I
!  Instructor

!  RINKU DEWRI
!  rdewri@cs.du.edu
!  http://cs.du.edu/~rdewri
!  Office Hours:

!  Aspen North 102C :: WR Noon - 1:30 PM

!  GTA
!  Thomas Hamill
!  thomasha@cs.du.edu
!  Office Hours:

!  Aspen North 300C :: M 2:00 - 3:00 PM, R 9:30 - 11:30 AM
L1-1 In

tr
od

uc
tio

n

2
 Website

http://www.cs.du.edu/3361

L1-2 In
tr

od
uc

tio
n

3
 What You Should Be Familiar With

!  Computer Organization
!  Systems Programming using C/C++ in Unix

L1-3 In
tr

od
uc

tio
n

int is_valid_address(long addr) {
long *base;
long limit;

base = (long *)(0x400);
limit = 0x200;

if ((long)base+limit <= addr)
return 0;

else
return 1;

}

Will this code compile?

No. Why?

Yes. What does it do?

4
 Organization of a Computer System

!  One or more CPUs and a number of device controllers
!  connected through a common bus
!  the bus provides access to shared memory

CPU

memory

disk
controller

USB controller graphics
adapter

L1-4 In
tr

od
uc

tio
n

BUS

5
 CPU

L1-5

!  Can execute a fixed set of instructions
!  e.g. ADD, MOV, CLI, BTS, BSWAP, LIDT and hundreds more

!  Basic cycle: fetch ! decode ! execute
!  has pipeline organization (each unit can run in parallel)

!  Works with a
!  few general purpose registers (EAX, EBX, ECX, ...), and
!  few special purpose registers (CS, SS, SP, EIP, EFLAGS, ...)

!  Can support hyperthreading and have multiple cores

In
tr

od
uc

tio
n

6
 Kernel Mode and User Mode

L1-6

!  Modern CPUs provide multiple modes of operations,
also called rings

!  Kernel (or supervior) mode: Ring 0
!  CPU can execute any supported instruction and access every

feature of the hardware

!  User mode: Ring 3
!  certain privileged instructions and direct access to hardware

are not allowed

!  Other modes (rings) may be available in the CPU, but
not necessarily used

In
tr

od
uc

tio
n

7
 Memory

L1-7

!  A hierarchy of storage options

In
tr

od
uc

tio
n

Fa
st

er

Ex
pe

ns
iv

e

registers

cache

main memory

solid-state disk

magnetic disk

optical disk

magnetic tapes

8
 Main Memory (RAM)

L1-8

!  A fast and cheap (yet volatile) storage option for the
CPU
!  CPU can address each and every byte of main memory

individually

!  CPU flags determine how addressing is performed
!  flat mode: 0x1000 (= the 4096th byte in RAM)
!  real mode: 0x0100:0x0000 (= 0x1000)
!  protected mode: 0x001B:0x0100 (= segment 2, offset 0x100)

!  From now on, when we say memory, we mean main
memory

In
tr

od
uc

tio
n

9
 Disk

L1-9

!  Large non-volatile storage option
!  Can be made of mechanical or electronic parts
!  Addressing locations on the disk

!  complex: cylinder, head, sector
!  easy: logical block addressing (LBA)

!  Our abstraction: a disk is an array where each index can
hold 512 bytes (called a sector)
!  easily implemented using LBA, which moderns disks support
!  cannot write less than 512 bytes!

In
tr

od
uc

tio
n

sector 0 sector 1 sector 2 sector 3 sector 4 sector 5 sector 6 ...

512 bytes

10
 I/O Devices

L1-10

!  Input/Output devices
!  keyboard, mouse, printer, display, ethernet, ...

!  Consists of the device controller and the device itself
!  the controller accepts commands and performs the

necessary hardware operations on the device

!  Each device also comes with a device driver
!  the software that knows what commands to send to the

controller for specific operations
!  provided by the device manufacturer

!  A device driver talks to a controller by writing
appropriate values to certain registers in the controller

In
tr

od
uc

tio
n

11
 CPU and I/O Device Communication

L1-11

!  CPU commands I/O device to perform a certain task.
How does it know when the task has finished?

!  Busy Waiting (Polling): CPU repeatedly requests the
status of the device (are you done?)

!  Interrupt: Device generates a signal (an interrupt) for
the CPU when the command execution finishes
!  every interrupt is associated with an interrupt number
!  an interrupt vector (descriptor) table stores the

memory locations of service routines to run
!  a special instruction (LIDT) is used to tell the CPU where the

table itself is stored in memory

In
tr

od
uc

tio
n

12

L1-12 In
tr

od
uc

tio
n

What happens on an
interrupt?

13
 On an Interrupt

L1-13

!  Few special purpose registers, including the program
counter (EIP) and the program status word (EFLAGS),
are stored

!  CPU is switched to kernel mode

!  The interrupt vector table is consulted to determine the
location of the code to execute for the interrupt
number

!  Control is transferred to this location

In
tr

od
uc

tio
n

14

L1-14 In
tr

od
uc

tio
n

What happens
at computer
startup?

15
 What Happens at Computer Startup?

!  Every PC has a BIOS (Basic Input/Output System)
!  contains low-level routines to read from the keyboard and

the disk, and write to the disk and the display
!  typically stored in ROM or EEPROM

!  The CPU executes a special module in the BIOS during
power-up or reboot
!  initializes all aspects of the system (Power-On Self Test)

!  CPU registers, device controllers, memory

!  determines the first bootable device (from a stored list)
!  loads the first sector from the boot device (using the

routines available in the BIOS) into memory locations
0x7C00 to 0x7DFF (512 bytes)

!  sets the program counter to 0x7C00 and begins execution

L1-15 In
tr

od
uc

tio
n

16

L1-16 In
tr

od
uc

tio
n

What is an Operating System?

17
 Components of a Computer System

user 1 user 2 user 3 user n …

 compiler assembler text editor … database system

system and application programs

operating system

computer
hardware

L1-17 In
tr

od
uc

tio
n

18
 What is an Operating System?

!  OS acts as an intermediary between application
programs and the computer hardware

!  A programmer wants to write to the disk
!  at the hardware level: write code to talk directly to the disk

controller and send the commands to store the data
!  at the software level: write code to talk to the device driver,

and use its interface to send commands to the controller
!  with an operating system: able to wrap the data as a file, and

use the operating system services to save a file to disk

L1-18 In
tr

od
uc

tio
n

19
 Another Operating System Definition

!  OS is a resource manager
!  which program will run on the CPU?
!  which sections of the memory will be used by a program?
!  which sectors of the disk will be used to store a file?

!  decides between requests for efficient and fair resource use

!  One commonly followed definition
!  a program running at all times on the computer, usually called

the kernel

L1-19 In
tr

od
uc

tio
n

20

L1-20 In
tr

od
uc

tio
n

What is a process?

21
 Processes

!  A process is a program in execution
!  programs are passive entities
!  processes are their active counterparts

!  Processes need resources, and have states
!  what is there in the CPU registers?
!  which memory locations belong to it?
!  which files are currently being opened by it?
!  which other processes are linked to it?
!  what is it currently doing (running, waiting, sleeping)?

!  The OS maintains all such information about all
processes in a data structure called a process table

L1-21 In
tr

od
uc

tio
n

22
 Process Address Space

L1-22

!  How does a process look like in memory?

In
tr

od
uc

tio
n

Stack

Data (global variables)

Text (executable instructions)

maximum allowed size
of stack (set by OS)

size of a
process

beginning
address of
process

Note: a rather simplified picture

23
 A Process in Memory

L1-23 In
tr

od
uc

tio
n

. . . Text Data Stack . . .

1 GB RAM

0x00

one process

0x3FFFFFFF

beginning location of the
process in memory

!  What should the beginning location be?
!  Should the beginning address be same for all processes?
!  Can parts of the process be in non-contiguous memory

locations?
!  Can the size of the process be larger than available memory

(1 GB in this case)?

stack pointer (ESP)

direction of
growth

24

L1-24 In
tr

od
uc

tio
n

What is a System Call?

25

user and other system programs

system calls

hardware

View of Operating System Services

services

program
execution

I/O
operations

file
systems communication

resource
allocation accounting

error
detection

protection &
security

operating system

user interfaces

GUI batch command line

L1-25 In
tr

od
uc

tio
n

26
 System Call

!  Programming method to obtain the services provided by
the OS

!  Accessed by programs via high-level wrapper functions,
rather than direct system call use

!  Switch to OS done by issuing software interrupts
!  e.g. INT instruction

!  Most common APIs
!  Win32 API for Windows
!  POSIX API for POSIX-based systems (including virtually all

versions of UNIX, Linux, and Mac OS X)
!  Java API for the Java virtual machine (JVM)

L1-26 In
tr

od
uc

tio
n

27
 Example of System Calls

copy

 Example System Call Sequence
Acquire input file name

 Write prompt to screen
 Accept input

Acquire output file name
 Write prompt to screen
 Accept input

Open the input file
 if file does not exist, abort

Create output file
 if file exists, abort

Loop
 Read from input file
 Write to output file

Until read fails
Close output file
Write completion message to screen
Terminate normally

source file destination file

L1-27 In
tr

od
uc

tio
n

28
 What Happens During a System Call?

L1-28 In
tr

od
uc

tio
n

count=read(fd,buffer,nbytes);

Return to caller

Trap to kernel (INT instruction)

5 Put code for read in register

Increment SP 11

Jump to read implementation

3 Push fd

2 Push &buffer

1 Push nbytes

Dispatch
read call
handler

7
8

4

6

9

10

kernel space
(operating system)

user space
(application program)

user program
calling read

implementation of
read in library

MEMORY

reads fd, &buffer and
nbytes from user stack

table of pointers to
different service handlers

29
 System Call Parameter Passing

!  At least one parameter: system call number (to identify
the requested service)

!  More possible depending on the service

!  Three general methods used to pass parameters to the
OS
!  simplest: pass the parameters in registers

!  may have more parameters than registers
!  parameters stored in a block, or table, in memory, and address

of block passed as a parameter in a register
!  parameters pushed onto the stack by the program and read

from the stack by the operating system (system call handler)

L1-29 In
tr

od
uc

tio
n

30

L1-30 In
tr

od
uc

tio
n

How can the different parts
of an OS be structured?

31
 Monolithic Operating Systems

L1-31

!  A single large program that runs in kernel mode

!  Basic structure
!  a main program that invokes the requested service

procedure
!  a set of service procedures that carry out the system calls
!  a set of utility procedures that help the service procedures

!  Loadable extensions (e.g. device drivers) are typically
supported in the form of shared libraries or DLLs

In
tr

od
uc

tio
n

32
 OS Layered Structure

!  The operating system is divided into a number of layers
(levels), each built on top of lower layers

!  The bottom layer (layer 0) is the hardware; the highest
(layer N) is the user interface

!  With modularity, layers are selected such that each uses
functions (operations) and services of only lower-level
layers

L1-32 In
tr

od
uc

tio
n

33
 Layered Operating System

layer 0
(hardware)

layer 1

layer N
(user interface)

.

.

L1-33 In
tr

od
uc

tio
n

34
 OS Microkernel Structure

!  Remove all nonessential components from the kernel
and implement them as user mode programs

!  Communication takes place between user modules
using message passing

!  Benefits
!  easier to extend a microkernel
!  easier to port the operating system to new architectures
!  more reliable and secure

!  Detriments
!  overhead of user space to kernel space communication

L1-34 In
tr

od
uc

tio
n

35
 References

L1-35

!  Chapter 1, Modern Operating Systems, A. Tanenbaum
and H. Bos, 4th Edition.

In
tr

od
uc

tio
n

