Process Synchronization

COMP 3361: Operating Systems I

Winter 2015
http:/ /www.cs.du.edu/3361

] Quick Solutions for Mutual Exclusion

» Disable interrupts upon entry into critical section;
enable when done in critical section
currently running code would execute without preemption

generally too inefficient on multiprocessor systems
operating systems using this not broadly scalable

do not know how long will a process stay in critical section

» Use a shared boolean variable to indicate that a process
is in its critical section

does not work; same race conditions as before

L10-1

L10-2

Producer

Consumer

while (true) {

while (turn != 0); <

Strict Alternation

// critical section:
// write to buffer
turn = 1;

// non-critical section

while (true) {

a spin lock

shared boolean variable:
bool turn = 0;

while (turn != 1); <
// critical section:
// read from buffer
turn = 0;

// non-critical section

a spin lock

3 Peterson’s Solution

» Producer and consumer share two variables
int turn
whose turn is it to enter the critical section
boolean interested[2]
is the process ready to enter its critical section?
interested[i] = true implies that process P, is ready

L10-3

4 Algorithm for Process P,

P, : Producer; P,: Consumer

do {

interested[i] = TRUE;
turn = 1i;
while (interested[1-i] && turn == 1i);

critical section

interested[i] = FALSE:

non-critical section
} while (TRUE);

L10-4

5 The BTS Instruction

LOCK BTS [loc], ©

copy bit 0 from the byte stored at memory address 1OC into
the carry (CF) flag (part of EFLAGS)

set the bit (make it |)

the LOCK prefix ensures that the instruction is executed
atomically

» Usually referred to as the Test and Set Lock (TSL)
Instruction

L10-5

S

olution Using BTS

Lock is a shared byte initialized to 0x00

do {

check_lock:
- LOCK BTS [lock],0 <«

lock becomes 0x01 after this

JC check_lock <

jump if CF=1

critical section

lock = 0;

remainder section
} while (TRUE);

L10-6

» a busy waiting loop (spin lock)

: Semaphore

» A semaphore is an integer variable S
» Can be initialized to non-negative number
» After that it can only be accessed through two standard

atomic operations

down (S) {
if (S is 0) {
add calling process to semaphore’s queue

block calling process

}
S=S5-1

up (S) {
S=S+1
if (semaphore’s queue is not empty) {
wake up a process from the queue
}

}

L10-7

8 Implementing Semaphores

» How to ensure up and down operations are not
interrupted!?

» Implemented as system calls
OS disables interrupts when running up and down

» Implemented in thread runtime system

must use one of the software synchronization methods to
ensure that another UP or dOWN operation is not initiated

» Semaphore value is 0 or | -2 binary semaphore

» Any other semaphore -> counting semaphore

L10-8

9 Mutex Locks

» Same as software locks using BTS or XCHG, but with
no busy waiting
mutex_lock (M) {

LOCK BTS [M],0
JC block_process
RET

block_process:
add calling process to mutex queue
block calling process

mutex_unlock (M) {
M=20

if (mutex’'s queue is not empty)
wake up a process from queue

L10-9

] O Implementing Mutex Locks

» Implement in kernel, or in thread runtime system

» What is the difference between a mutex lock and a
binary semaphore initialized to |?

none if implemented as shown in the previous slides

» Mutex locks have ownership
only the process that owns the lock can unlock it

modify mutex_lock so that we remember which process
owns the lock (ran the function without blocking)

modify mutex_unlock so that the body executes only if
called by the owner

LIO-10

]] Bounded-Buffer Prod.-Cons. Solution

» N buffers, each can hold one item

» Mutex mx

can also be done using a binary semaphore

» Counting semaphore full initialized to the value 0

number of full buffers

» Counting semaphore empty initialized to the value N

number of empty buffers

LI0-11

] 2 The New Producers-Consumers

while (true) {
/* Produce an item */
down (empty) ;
/* Add item to buffer */

Producer
up (full);
}
- to prevent
- multiple
consumers from
_ reading the buffer
while (true) { concurrently
down (full);
mutex_ lock(mx);
Consumer /* Remove item frogi buffer */

mutex_unlock (mx);

up (empty) ;
/* Consume the item */

L10-12

] 3 What Can Happen Here?

S and Q are two mutex locks

in process P in process T
mutex_lock (S); mutex_lock (Q);
mutex_lock (Q); mutex_lock (S);
mutex_unlock (Q); mutex_unlock (S);
mutex_unlock (S); mutex_unlock (Q);
g _/ g _

DEADLOCK

if P executes mutex_lock(S) and then T executes mutex_lock(Q); or the other way

L10-13

] 4 Lookout!

up (S) :
several processes may be executing
critical section — / in their critical section
down (S)
N __

mutex_lock (mx)

deadlock

critical section . /

mutex_lock (mx)

Process Synchronization

L10-14

1 5 Condition Variables

» The condition used to block a process in semaphores
and mutex locks are simple

whether a number is zero or not!?

» Condition variables: No checks on any variable
wait(C)
a process that invokes this operation is suspended
signal(C)
resumes one of the processes (if any) that invoked wait(C)
» Typical usage
user code obtains lock on shared variables
user code checks some condition on the variables

release lock on shared variables

calls wait() or signal() depending on result of condition check

L10-15

1 6 Monitors

» A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

provided by languages such as Java

» Only one process may be active within the monitor at a
time

mohnitor monitor-name

{

/| shared variable declarations
procedure PI (...) {....}

procedure Pn (...) {...... }

initialization code (....) { ...}

}
}

LIO-16

Schematic View of a Monitor

shared data process/thread currently executing
some operation inside the monitor

.
"
-

processes/threads waiting to

operations on shared data enter the monitor (i.e. perform
some operation inside the
monitor)

initialization code

- — e —

L10-17

] 8 Mutex Locks Using Pthreads

» pthread mutex_t mylock = PTHREAD MUTEX INITIALIZER;

creates a mutex lock called mylock and initializes it

» pthread mutex lock(&mylock);
acquire mylock

» pthread mutex_unlock(&mylock);
release mylock

» pthread mutex_destroy(&mylock);

release resources used by mutex mylock; in effect uninitializes
it

LI0-18

] g POSIX Semaphores

» sem_t my sem;
defines a semaphore variable called my_sem
» sem_init(&my sem, O, 5);
initializes my_sem to 5; second arguments says semaphore
not to be shared with child processes
) sem_wait (&my_ sem);
down operation on semaphore my_sem
» sem_ post(&my_ sem);
up operation on semaphore my_sem
» sem_destroy(&my_ sem);

destroys the semaphore (release resources associated with
my_sem)

L10-19

20 Condition Variables Using Pthreads

» pthread cond t cond = PTHREAD COND INITIALIZER;
creates a condition variable called cond and initializes it

» pthread cond wait (&cond, &mylock);
releases mutex mylock (must have been acquired before
calling this function)
blocks until a signal on the condition variable cond wakes it

up

» pthread cond signal (&cond);
unblocks at least one thread (if any) that is blocked on the
condition variable cond
a variant is pthread cond broadcast (&cond) that
unblocks all threads blocked on cond

thread(s) contend for the mutex used when they called wait()

L10-20

2 1 Some Classical Problems

L10-21

» Bounded-Buffer Producer-Consumer (PS) Problem

» Dining-Philosophers Problem

» Readers-Writers Problem

2 2 Dining-Philosophers Problem

» Can only pick up one ferk chopstick at a time

pick one, hold, pick another
» Eat when both chopsticks in hand
» Put down both chopsticks and think!!

» Repeat

L10-22

2 3 Dining-Philosophers Solution

» Shared data
chopsticks (data, resource, ...)

an array of binary semaphores chopstick[5]
all initialized to |

while (true) {
down (chopstick[i]);
down (chopstick[(i + 1) % 5]);
/* eat */

o\

up (chopstick[i]);

Philospher i

up (chopstick[(i + 1) % 5]);
/* think */

o\

L10-23

2 4 Readers-Writers Problem

» A data set is shared among a number of concurrent
processes

readers: only read the data set; they do not perform any
updates

writers: can both read and write

» Scenario
allow multiple readers to read at the same time

when a writer is updating the data, no reader (or another
writer) should be accessing the data

L10-24

2 5 Readers-Writer Solution

» Shared data
some data set
integer readcount initialized to 0
mutex lock mx_rc

binary semaphore wrt initialized to |

L10-25

2 6 The Readers-Writer Code

do {

mutex_lock(mx_rc) ;
readcount ++ ;

while (true) {
down (wrt);

if (readcount == 1) /% write x/
down (wrt) ;
mutex_unlock(mx_rc); up (wrt);
b
/* read *x/
Writer
mutex_lock(mx_rc) ;
readcount —- ; C e
. . A reader always cuts in line in front of
1f (readcount == 0) i
writer!
up (wrt) ;

mutex_unlock(mx_rc) ;

Modify so that new readers wait
} while (TRUE);

once writer wants to make an
update

Reader

L10-26

2 : References

» Chapter 2.3 and 2.5, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4" Edition.

L10-27

