
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

Process Synchronization

1 Quick Solutions for Mutual Exclusion

!  Disable interrupts upon entry into critical section;
enable when done in critical section
!  currently running code would execute without preemption
!  generally too inefficient on multiprocessor systems

!  operating systems using this not broadly scalable
!  do not know how long will a process stay in critical section

!  Use a shared boolean variable to indicate that a process
is in its critical section
!  does not work; same race conditions as before

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-1

2 Strict Alternation

while (true) {

while (turn != 0);

// critical section:

// write to buffer

turn = 1;

// non-critical section

}

while (true) {

while (turn != 1);

// critical section:

// read from buffer

turn = 0;

// non-critical section

}

shared boolean variable:
bool turn = 0; !

a spin lock

a spin lock

Pr
od

uc
er

C

on
su

m
er

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-2

3 Peterson’s Solution

!  Producer and consumer share two variables
!  int turn

!  whose turn is it to enter the critical section
!  boolean interested[2]

!  is the process ready to enter its critical section?
!  interested[i] = true implies that process Pi is ready

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-3

4 Algorithm for Process Pi

do { !

interested[i] = TRUE; !
turn = i; !
while (interested[1-i] && turn == i);!
!

critical section!

interested[i] = FALSE; !

non-critical section !
} while (TRUE); !

P0 : Producer; P1: Consumer

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-4

5 The BTS Instruction

LOCK BTS [loc], 0 !
!  copy bit 0 from the byte stored at memory address loc into

the carry (CF) flag (part of EFLAGS)
!  set the bit (make it 1)
!  the LOCK prefix ensures that the instruction is executed

atomically

!  Usually referred to as the Test and Set Lock (TSL)
instruction

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-5

6 Solution Using BTS

lock is a shared byte initialized to 0x00

lock becomes 0x01 after this
jump if CF=1

do { !
 check_lock: !

 LOCK BTS [lock],0 !
 JC check_lock!
!

critical section!

lock = 0; !

remainder section!
} while (TRUE); !

a busy waiting loop (spin lock)

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-6

7 Semaphore

!  A semaphore is an integer variable S
!  Can be initialized to non-negative number
!  After that it can only be accessed through two standard

atomic operations

down (S) { !
 if (S is 0) { !

 add calling process to semaphore’s queue !
 block calling process !

 } !
 S = S - 1 !
} !

up (S) { !
 S = S + 1 !
 if (semaphore’s queue is not empty) { !
 wake up a process from the queue !
 } !
} !

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-7

8 Implementing Semaphores

!  How to ensure up and down operations are not
interrupted?

!  Implemented as system calls
!  OS disables interrupts when running up and down !

!  Implemented in thread runtime system
!  must use one of the software synchronization methods to

ensure that another up or down operation is not initiated

!  Semaphore value is 0 or 1 ! binary semaphore
!  Any other semaphore ! counting semaphore

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-8

9 Mutex Locks

!  Same as software locks using BTS or XCHG, but with
no busy waiting

mutex_lock (M) {!

 LOCK BTS [M],0 !
 JC block_process!

 RET !

 block_process: !
 add calling process to mutex queue !

 block calling process !
} !

mutex_unlock (M) { !

 M = 0 !

 if (mutex’s queue is not empty) !
 wake up a process from queue !

} !

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-9

10 Implementing Mutex Locks

!  Implement in kernel, or in thread runtime system
!  What is the difference between a mutex lock and a

binary semaphore initialized to 1?
!  none if implemented as shown in the previous slides

!  Mutex locks have ownership
!  only the process that owns the lock can unlock it
!  modify mutex_lock so that we remember which process

owns the lock (ran the function without blocking)
!  modify mutex_unlock so that the body executes only if

called by the owner

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-10

11 Bounded-Buffer Prod.-Cons. Solution

!  N buffers, each can hold one item

!  Mutex mx
!  can also be done using a binary semaphore

!  Counting semaphore full initialized to the value 0
!  number of full buffers

!  Counting semaphore empty initialized to the value N
!  number of empty buffers

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-11

12 The New Producers-Consumers

while (true) {

/* Produce an item */

 down(empty);

 /* Add item to buffer */

 up(full);

 }

Producer

while (true) {

 down(full);

 mutex_lock(mx);

 /* Remove item from buffer */

 mutex_unlock(mx);

 up(empty);

/* Consume the item */

 }

Consumer

Why these?

to prevent
multiple
consumers from
reading the buffer
concurrently

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-12

13 What Can Happen Here?

mutex_lock (S);
mutex_lock (Q);
.
.
mutex_unlock (Q);
mutex_unlock (S);

mutex_lock (Q);
mutex_lock (S);
.
.
mutex_unlock (S);
mutex_unlock (Q);

in process P in process T

S and Q are two mutex locks

DEADLOCK

if P executes mutex_lock(S) and then T executes mutex_lock(Q); or the other way

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-13

14 Lookout!

up (S)

 critical section

down (S)

mutex_lock (mx)

 critical section

mutex_lock (mx)

several processes may be executing
in their critical section

deadlock

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-14

15 Condition Variables

!  The condition used to block a process in semaphores
and mutex locks are simple
!  whether a number is zero or not?

!  Condition variables: No checks on any variable
!  wait(C)

!  a process that invokes this operation is suspended

!  signal(C)
!  resumes one of the processes (if any) that invoked wait(C)

!  Typical usage
!  user code obtains lock on shared variables
!  user code checks some condition on the variables
!  release lock on shared variables
!  calls wait() or signal() depending on result of condition check

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-15

16 Monitors

!  A high-level abstraction that provides a convenient and
effective mechanism for process synchronization
!  provided by languages such as Java

!  Only one process may be active within the monitor at a
time

monitor monitor-name
{

 // shared variable declarations
 procedure P1 (…) { …. }
 …

 procedure Pn (…) {……}

 initialization code (….) { … }
 …
 }

}

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-16

17 Schematic View of a Monitor

shared data

..

initialization code

operations on shared data

m
on

ito
r

processes/threads waiting to
enter the monitor (i.e. perform
some operation inside the
monitor)

process/thread currently executing
some operation inside the monitor

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-17

18 Mutex Locks Using Pthreads

!  pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

!  creates a mutex lock called mylock and initializes it

!  pthread_mutex_lock(&mylock);

!  acquire mylock

!  pthread_mutex_unlock(&mylock);

!  release mylock

!  pthread_mutex_destroy(&mylock);

!  release resources used by mutex mylock; in effect uninitializes
it

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-18

19 POSIX Semaphores

!  sem_t my_sem;

!  defines a semaphore variable called my_sem
!  sem_init(&my_sem, 0, 5);

!  initializes my_sem to 5; second arguments says semaphore
not to be shared with child processes

!  sem_wait(&my_sem);

!  down operation on semaphore my_sem
!  sem_post(&my_sem);

!  up operation on semaphore my_sem
!  sem_destroy(&my_sem);

!  destroys the semaphore (release resources associated with
my_sem)

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-19

20 Condition Variables Using Pthreads

!  pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

!  creates a condition variable called cond and initializes it

!  pthread_cond_wait(&cond, &mylock);

!  releases mutex mylock (must have been acquired before
calling this function)

!  blocks until a signal on the condition variable cond wakes it
up

!  pthread_cond_signal(&cond);

!  unblocks at least one thread (if any) that is blocked on the
condition variable cond

!  a variant is pthread_cond_broadcast(&cond) that
unblocks all threads blocked on cond

!  thread(s) contend for the mutex used when they called wait()

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-20

21 Some Classical Problems

!  Bounded-Buffer Producer-Consumer (PS) Problem

!  Dining-Philosophers Problem

!  Readers-Writers Problem

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-21

22 Dining-Philosophers Problem

!  Can only pick up one fork chopstick at a time
!  pick one, hold, pick another

!  Eat when both chopsticks in hand
!  Put down both chopsticks and think!!
!  Repeat

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-22

23 Dining-Philosophers Solution

!  Shared data
!  chopsticks (data, resource, …)
!  an array of binary semaphores chopstick[5]

!  all initialized to 1

while (true) {

down (chopstick[i]);

down (chopstick[(i + 1) % 5]);

/* eat */

up (chopstick[i]);

up (chopstick[(i + 1) % 5]);

/* think */

}

Ph
ilo

sp
he

r
i

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-23

24 Readers-Writers Problem

!  A data set is shared among a number of concurrent
processes
!  readers: only read the data set; they do not perform any

updates
!  writers: can both read and write

!  Scenario
!  allow multiple readers to read at the same time
!  when a writer is updating the data, no reader (or another

writer) should be accessing the data

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-24

25 Readers-Writer Solution

!  Shared data
!  some data set
!  integer readcount initialized to 0
!  mutex lock mx_rc
!  binary semaphore wrt initialized to 1

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-25

26 The Readers-Writer Code

do { !
mutex_lock(mx_rc) ; !
readcount ++ ; !
if (readcount == 1) !

down (wrt) ; !
mutex_unlock(mx_rc); !

 /* read */ !

mutex_lock(mx_rc) ; !
 readcount -- ; !

if (readcount == 0) !
up (wrt) ; !

mutex_unlock(mx_rc) ; !
} while (TRUE); !

Reader

while (true) { !
 down(wrt); !

 /* write */ !

 up(wrt); !
} !

Writer

A reader always cuts in line in front of
writer!

Modify so that new readers wait
once writer wants to make an
update

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-26

27 References

!  Chapter 2.3 and 2.5, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4th Edition.

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L10-27

