
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

Virtual Memory

1 Till Now…

L12-1

!  Process is unaware of amount of physical memory
installed
!  we are using logical address spaces

!  We assume that there is enough physical memory to
hold all running processes

!  What if there is not enough physical memory for all
processes?

!  Can we run a process without requiring it to be in
physical memory in its entirety?
!  swapping
!  virtual memory

V
ir

tu
al

 M
em

or
y

2 Swapping

L12-2

!  Swap processes in and out of the disk

V
ir

tu
al

 M
em

or
y

user space

operating
system

main memory

process
P1

process
P2

backing store (disk)

1. swap out

2. swap in

3 Virtual Memory

!  Only a part of the program needs to be in memory for
execution
!  keep only some pages of the process in physical memory
!  others kept in a special disk space (called swap space)

!  Use paging structures to indicate that a certain page is
not in physical memory

!  Bring page in from swap space when needed
!  Swap page out to swap space when low in memory

!  process used up maximum number of allowed physical
frames

V
ir

tu
al

 M
em

or
y

L12-3

4 Simulating a Larger Physical Memory

page 0

page 1

page 2

.

.

.

page n

…

logical address space

paging
structures

physical memory

disk swap space

page in disk

page out

page in

page
replacement

V
ir

tu
al

 M
em

or
y

L12-4

5 Swapping Pages In and Out

process A

process B

swap out

swap in

physical memory

swap in with replacement

V
ir

tu
al

 M
em

or
y

L12-5

Similar to swapping entire processes

6 Page Faults

!  A Present bit is associated with each page table entry
!  1 ⇒ in-memory, 0 ⇒ not-in-memory

!  During address translation, if present bit in page table
entry is
!  1 ⇒ access frame
!  0 ⇒ page fault

!  Page fault means you are trying to access a page that is
not in memory
!  could be because page is not mapped
!  could be because page is in swap space

!  An exception is thrown if a page fault happens

V
ir

tu
al

 M
em

or
y

L12-6

7 What To Do On A Page Fault?

!  Operating system must decide if
!  page fault address is unmapped ⇒ abort (segmentation fault)
!  page is in swap space

!  OS can store swap space location in the page table
entry itself when page is swapped out

!  Find a free frame (with or without replacement)
!  Read in desired page into allocated frame
!  Modify page table entry
!  Restart the instruction that caused the page fault

!  program counter points to faulting instruction (hardware must
do this automatically)

V
ir

tu
al

 M
em

or
y

L12-7

8 Handling A Page Fault

load M … 0

free

free

free

free

1) reference

2) page fault

4) bring page
into memory

5) store frame address in
page table entry; make
entry present

6) restart
instruction

page table

physical memory

OS

V
ir

tu
al

 M
em

or
y

L12-8

3) reference is valid but page is in disk 3) invalid
reference

ERROR

9 What If There Are No Free Frames?

!  Find some frame in memory that is not really in use, and
swap it out
!  need a page replacement algorithm
!  should result in minimum number of page faults

!  Same page may be brought into memory several times

V
ir

tu
al

 M
em

or
y

L12-9

10 Basic Page Replacement

!  Find the location of the desired page on disk

!  Find a free frame
!  if there is a free frame, use it
!  if there are no free frames, use a page replacement algorithm

to select a victim page

!  Write victim page to disk if page has been modified
!  Update victim page’s page table entry to indicate that

page is in swap space (can store location here as well)

!  Bring the desired page into the newly freed frame
!  update the page tables

!  Restart the user process

V
ir

tu
al

 M
em

or
y

L12-10

11 Reference String

!  A string of page numbers accessed by a process during
execution

!  Useful in computing how many page faults will occur
when a particular replacement algorithm is used

V
ir

tu
al

 M
em

or
y

L12-11

12 Optimal Page Replacement Algorithm

!  Replace page that will not be used for longest period of
time

!  How do we know this?
!  we don’t!! not really a practical algorithm
!  useful for measuring how well other algorithms perform

V
ir

tu
al

 M
em

or
y

L12-12

13 Optimal Algorithm Example

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7

0 0 0 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0

1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1

frame to be overwritten in case of a page fault

V
ir

tu
al

 M
em

or
y

L12-13

memory
frames

reference string

14 Using Page Table Entry Flags

L12-14 V
ir

tu
al

 M
em

or
y

0 0 0 0

31:12 11:9 8 7 6 5 4 3 2 1 0 !

page modified?
page accessed?

page present?

32 bit (4 byte) page table entry

Modifed bit set by hardware when page is written to
Accessed (Referenced) bit set by hardware when page is read or written to

Once set, these bits are not cleared by hardware
OS can clear them (set to 0) during timer interrupts

15 Not Recently Used Algorithm

L12-15

!  OS periodically clears accessed (referenced) bit

!  Class 0: Accessed = 0; Modified = 0
!  Class 1: Accessed = 0; Modified = 1
!  Class 2: Accessed = 1; Modified = 0
!  Class 3: Accessed = 1; Modified = 1

!  Choose Class 0 page (swap out not necessary)
!  If none, choose class 1 page
!  If none, choose class 2 page (swap out not necessary)
!  If none, choose class 3 page

V
ir

tu
al

 M
em

or
y

16 FIFO Algorithm

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7

0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0

1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1

frame to be overwritten in case of a page fault

memory
frames

reference string

V
ir

tu
al

 M
em

or
y

L12-16

17 Is More Frames Better?

!  Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
!  3 frames (3 pages can be in memory at a time per

process)

!  4 frames

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5 5 5 5

2 2 2 1 1 1 1 1 3 3 3

3 3 3 2 2 2 2 2 4 4

9 page faults

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 5 5 5 5 4 4

2 2 2 2 2 2 1 1 1 1 5

3 3 3 3 3 3 2 2 2 2

4 4 4 4 4 4 3 3 3

10 page faults

V
ir

tu
al

 M
em

or
y

L12-17

18 Belady’s Anomaly

!  For some page replacement algorithms, increasing the
number of frames increases the number of page faults
!  increasing memory does not always increase performance!!

reference string:
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

V
ir

tu
al

 M
em

or
y

L12-18

19 Second-Chance Algorithm

!  Second chance
!  same as FIFO but uses reference bit

!  After a page has been selected using FIFO
!  if Accessed = 1

!  set reference bit to zero
!  leave the page
!  move over to next possibility according to FIFO

V
ir

tu
al

 M
em

or
y

L12-19

20 Clock Algorithm

next
victim
using
FIFO

0

0

1

1

0

1

.

.

0

.

.

ref. bit

0

0

0

1

0

1

.

.

0

.

.

ref. bit

0

0

0

0

0

1

.

.

0

.

.

ref. bit

page to be
replaced

new page is
inserted
here; ref. bit
is set to 1

next
possible
victim is the
next in
queue

V
ir

tu
al

 M
em

or
y

L12-20

Second-Chance Using Circular Queue

21 LRU Page Replacement Algorithm

!  Least Recently Used (LRU) page is chosen as the victim

!  Counter implementation (not really possible)
!  every page table entry has a counter field
!  every time page is referenced through this entry, increment

counter
!  when a page needs to be replaced, choose the one with the

smallest counter value
!  requires a search to find the least recently used page

V
ir

tu
al

 M
em

or
y

L12-21

22 LRU Example

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 4 4 4 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0

1 1 1 3 3 3 2 2 2 2 2 2 2 2 2 7 7 7

frame to be overwritten in case of a page fault

V
ir

tu
al

 M
em

or
y

L12-22

23 LRU Approximation Algorithms

!  Most systems do not provide any hardware support for
a true LRU implementation

!  Not Frequently Used algorithm: use the reference bit
(accessed bit) provided in hardware
!  maintain software counter for each page, initially = 0
!  at each timer interrupt, add the page’s reference bit value to

counter
!  then clear reference bit

!  on page fault, choose page with lowest counter value
!  what happens if page is heavily used and then not used at all?

V
ir

tu
al

 M
em

or
y

L12-23

24 Aging Algorithm

!  Maintain a byte (8 bits) for each page
!  At timer interrupt, for each page

!  discard low-order bit of the byte
!  insert reference bit for the page at the left-most position

!  then, clear the reference bit

!  Page with lowest value is the least referenced one
!  Issues

!  do not know which page was accessed more recently
between two timer interrupts

!  do not know which page was accessed nine ticks ago

11001001 01100100
ref. bit = 0

V
ir

tu
al

 M
em

or
y

L12-24

25 Demand Paging

!  Process starts with no pages in memory
!  Pages are brought into memory as and when they are

needed

!  Why demand paging works?
!  programs tend to have locality of reference
!  programs heavily refer to a set of pages before moving on to

another set

V
ir

tu
al

 M
em

or
y

L12-25

26 Working-Set Model

!  Working Set: w(k,t) = the pages used by a process in the
last k memory references at time t
!  easier to work with “pages used by a process in the last Δ

time units”

!  If entire working set is not in memory, process will
cause too many page faults (called thrashing)

!  Reduce page faults by prepaging the working set

V
ir

tu
al

 M
em

or
y

L12-26

27 Working Set Based Page Replacement

!  Approximate with interval timer and a reference bit
!  need to maintain timer tick count of last use for each page in

memory

!  Example: Δ = 10,000 timer ticks
!  reference bit is cleared on every timer tick (interrupt)

!  the bit is set by hardware every time the page is used

!  on page fault, examine reference bit and timer tick count to
find page that has not been used in last Δ ticks

V
ir

tu
al

 M
em

or
y

L12-27

28 Using Working-Set on a Page Fault

V
ir

tu
al

 M
em

or
y

L12-28

LUT: 102084 !
R: 1 !

LUT: timer tick when last used
R: reference bit
M: modified bit

LUT: 94003 !
R: 0 !

LUT: 92000 !
R: 1 !

Current timer value = 103450
Δ = 10,000 timer ticks

a page used
between tick

103450 and now;
before that page

was used near tick
102084

a page not used
since tick 93000

a page not used
since tick 94003

a page used
between tick

103450 and now;
before that page

was used near tick
92000

LUT: 93000 !
R: 0 !

LUT: 103450 !
R: 1 !

age = 0

in working set

LUT: 103450 !
R: 1 !

age = 0

in working set

LUT: 94003 !
R: 0 !

age = 9447

in working set

LUT: 93000 !
R: 0 !

age = 10450

not in working set

29 WSClock Algorithm

L12-29 V
ir

tu
al

 M
em

or
y

LUT: 1620 !
R: 1 !
M: 0 !

LUT: 1503 !
R: 0 !
M: 0 !

LUT: 2020 !
R: 1 !
M: 1 !

LUT: 1213 !
R: 0 !
M: 1 !

LUT: 1980 !
R: 0 !
M: 1 !

LUT: 2014 !
R: 1 !
M: 1 !

LUT: 2084 !
R: 1 !
M: 1 !

LUT: 2032 !
R: 1 !
M: 1 !

Current time: 2204
Δ = 500 timer ticks

page in working set;
referenced and dirty

30 WSClock Algorithm

L12-30 V
ir

tu
al

 M
em

or
y

LUT: 1620 !
R: 1 !
M: 0 !

LUT: 1503 !
R: 0 !
M: 0 !

LUT: 2020 !
R: 1 !
M: 1 !

LUT: 1213 !
R: 0 !
M: 1 !

LUT: 1980 !
R: 0 !
M: 1 !

LUT: 2014 !
R: 1 0 !
M: 1 !

LUT: 2084 !
R: 1 !
M: 1 !

LUT: 2032 !
R: 1 !
M: 1 !

Current time: 2204
Δ = 500 timer ticks

page not in working set; not
accessed recently, but dirty !
schedule write to disk

31 WSClock Algorithm

L12-31 V
ir

tu
al

 M
em

or
y

LUT: 1620 !
R: 1 !
M: 0 !

LUT: 1503 !
R: 0 !
M: 0 !

LUT: 2020 !
R: 1 !
M: 1 !

LUT: 1213 !
R: 0 !
M: 1 !

LUT: 1980 !
R: 0 !
M: 1 !

LUT: 2014 !
R: 1 0 !
M: 1 !

LUT: 2084 !
R: 1 !
M: 1 !

LUT: 2032 !
R: 1 !
M: 1 !

Current time: 2204
Δ = 500 timer ticks

page in working set

sync with disk

32 WSClock Algorithm

L12-32 V
ir

tu
al

 M
em

or
y

LUT: 1620 !
R: 1 !
M: 0 !

LUT: 1503 !
R: 0 !
M: 0 !

LUT: 2020 !
R: 1 !
M: 1 !

LUT: 1213 !
R: 0 !
M: 1 0 !

LUT: 1980 !
R: 0 !
M: 1 !

LUT: 2014 !
R: 1 0 !
M: 1 !

LUT: 2084 !
R: 1 !
M: 1 !

LUT: 2032 !
R: 1 !
M: 1 !

Current time: 2204
Δ = 500 timer ticks

page not in working set;
not accessed recently and
not dirty ! victim!

sync with disk complete!

33 Global Vs. Local Replacement

!  Global replacement: select a replacement frame from
the set of all frames
!  one process can take a frame from another
!  process cannot control its page-fault rate

!  Local replacement: each process selects from only its
own set of allocated frames
!  does not make less used frames available to other processes

V
ir

tu
al

 M
em

or
y

L12-33

34 Page Size

!  Page size selection must take into consideration
!  fragmentation

!  smaller pages ⇒ less internal fragmentation

!  locality
!  smaller pages ⇒ better resolution in locality

!  table size
!  larger pages ⇒ smaller page table

!  I/O overhead
!  larger pages ⇒ less I/O time

!  TLB
!  larger pages ⇒ faster translation of more of the address space

V
ir

tu
al

 M
em

or
y

L12-34

35 Shared Pages and Shared Libraries

L12-35

!  Shared pages: pages in different processes mapped to
same frames (see slide L9-2)
!  must update page tables of all processes when swapping out

one process
!  too many page faults when other processes try to access shared

memory

!  must be able to discover that frames are shared when one
process finishes

!  Shared library: commonly used code shared across
processes (e.g. libc)
!  implemented using shared pages
!  call to a shared library function is replaced with small stub

that calls function implemented in the shared pages

V
ir

tu
al

 M
em

or
y

36 Memory Mapped Files

L12-36 V
ir

tu
al

 M
em

or
y

0 ! 0x00402001 !
1 ! 0x00403001 !
2 ! 0x00404001 !
3 ! 0x00405001 !
. ! . . . !

Process A’s Page Table

Physical Memory

file on disk

memory mapped (accessing the memory
area is same as accessing the file)

37 Page Pinning

!  Pages must sometimes be locked into memory
!  locked means it cannot be chosen as a victim for page

replacement

!  E.g. pages that are used for copying a file from a device
must be locked from being selected for eviction by a
page replacement algorithm

V
ir

tu
al

 M
em

or
y

L12-37

38 Implementing Swap Space

L12-38

!  Keep aside an area of disk for swap space
!  should be large enough to hold most (better if all) processes

!  Divide swap space into “swap regions” of size same as a
page
!  one sector = 512 bytes; 8 sectors = 4 KB (page size)

!  Maintain an array in kernel to store sector address of
beginning of swap regions, and which ones are not in use

!  When a page is swapped out (written to some swap
region), store array index in page table entry

V
ir

tu
al

 M
em

or
y

39 Overall Page Fault Handling

L12-39 V
ir

tu
al

 M
em

or
y

40 References

L12-40

!  Chapter 3.4-3.6, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4th Edition.

V
ir

tu
al

 M
em

or
y

