
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

Device Management

1
 I/O Devices

L15-1

!  Block devices
!  stores information in fixed-size blocks
!  transfers are in units of entire blocks
!  example: hard disk

!  Character devices
!  delivers or accepts stream of characters, without regard to

block structure
!  not addressable, does not have any seek operation
!  example: printer

!  Others
!  example: clocks

Fi
le

 S
ys

te
m

s

2
 I/O Device Speed

L15-2 Fi
le

 S
ys

te
m

s

3
 Device Controller

L15-3

!  An electronic component that talks to the device
!  Language is standardized

!  SATA, SCSI, USB, Thunderbolt, …
!  device can be built independent of controller

Fi
le

 S
ys

te
m

s

SATA communication send/receive
commands from CPU

SATA Disk Controller
(position disk parts, read/write bit streams)

SATA Disk

4
 Talking to a Controller

L15-4

!  Each controller has a few control registers
!  controller responds to data (commands) written to the

registers

!  Controller can also has data registers and buffers
!  used to hold data intermediately during transit from memory

to device
!  OS can read from the data buffers
!  devices can also have buffers; OS can trigger controller to

read device buffer to memory

Fi
le

 S
ys

te
m

s

5
 Talking to a Controller

L15-5

!  I/O port: controller registers are assigned specific
numbers
!  OS can read in and write to the controller’s registers using

the numbers

!  Memory-mapped I/O: controller registers/buffers are
mapped to specific physical memory address range
!  OS reads in and writes to memory region
!  controller writes to and reads in from memory region

Fi
le

 S
ys

te
m

s

address bus

6
 Memory-Mapped I/O

L15-6

!  Can communicate with device controllers with memory
read/write
!  no assembly coding necessary

!  OS can allow a user program to control a device
!  set up page tables accordingly

!  All instructions that can access memory can access
devices
!  can easily check state of registers; instead of first reading it to

a memory location and then checking

!  Must be able to selectively disable memory caching

Fi
le

 S
ys

te
m

s

7
 Reading From Disk

L15-7 Fi
le

 S
ys

te
m

s

uint8_t read_disk(uint32_t LBA, uint8_t n_sectors, uint8_t *buffer) {
uint8_t status;
int i;
uint16_t sectors_to_read;
uint16_t *data = (uint16_t *)buffer;
...
// LBA mode (bit 6) and highest four bits of LBA (bit 7 and 5 are always set)
port_write_byte(0x1F6, 0xE0 | ((LBA >> 24) & 0x0F));

port_write_byte(0x1F1,0x00); // NULL byte
port_write_byte(0x1F2,n_sectors); // sector count
port_write_byte(0x1F3,(uint8_t)LBA); // low 8 bits of LBA
port_write_byte(0x1F4,(uint8_t)(LBA>>8)); // next 8 bits of LBA
port_write_byte(0x1F5,(uint8_t)(LBA>>16)); // next 8 bits of LBA
port_write_byte(0x1F7,0x20); // send READ SECTORS command

sectors_to_read = (n_sectors==0)?256:n_sectors;

for (; sectors_to_read>0; sectors_to_read--) {
// poll for readiness
...
// read one sector
for(i=0; i<256; i++) {

data[i] = port_read_word(0x1F0); // read one word (2 bytes)
}
data += 256;
... !

}
return NO_ERROR;

}

8
 Using a DMA Controller

L15-8 Fi
le

 S
ys

te
m

s

9
 Interrupt Controller

L15-9

!  Interrupts generated by devices are read by the
interrupt controller
!  devices assert a signal on an assigned interrupt line
!  controller looks out for these signals

!  Interrupt controller puts a number on address lines and
asserts the interrupt line going to the CPU

!  Service routine notifies controller of service completion
by writing to a special port of the controller
!  controller can notify device of service completion and attend

to a pending interrupt from another device

Fi
le

 S
ys

te
m

s

10
 Programmed I/O

L15-10

!  CPU determines if device is available and issues
commands to controller for every byte/word it needs to
read/write
!  example: slide 7

Fi
le

 S
ys

te
m

s

printing using programmed I/O

11
 Interrupt-Driven I/O

L15-11

!  Remove polling or busy waiting
!  is the device ready for next command? …

!  Can be used if controllers can (be programmed to)
generate an interrupt on command completion
!  controller notifies CPU when command completes
!  CPU then carries out next command

Fi
le

 S
ys

te
m

s

printing first character printer interrupt service routine

12
 I/O Using DMA

L15-12

!  Interrupt-drive I/O requires interrupt handling for every
byte/word of data

!  Programmed I/O, but with hardware (DMA) support
!  let DMA controller talk to device controller and transfer

data (whatever the DMA controller’s buffer can hold)
!  DMA controller issues interrupt to CPU when buffer is full

Fi
le

 S
ys

te
m

s

set up DMA DMA interrupt service routine
(assuming DMA buffer is big enough to hold all data)

13
 I/O Software Layers

L15-13

!  What software layers are involved in accessing
hardware?

Fi
le

 S
ys

te
m

s

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

14
 Interrupt Handler

L15-14

!  Interrupts are mechanisms for controllers to inform
CPU of an event (“I finished the task you assigned”)

!  Interrupt handlers run when interrupts are generated

!  OS responsibilities
!  save process state
!  set up execution environment for handler
!  run handler
!  restore state

Fi
le

 S
ys

te
m

s

15
 Device Driver

L15-15

!  Device controllers expect commands from the CPU
!  What commands will do what?

!  specific to device

!  Device driver: program that knows what commands to
issue to extract a specific functionality from a specific
device controller
!  e.g.: command to obtain disk size from a SATA disk controller

!  Runs as part of the kernel
!  OS can implement drivers
!  allow for their installation; OS defines standard interface that

it will use to interact with the drivers

Fi
le

 S
ys

te
m

s

16
 Device-Independent I/O Software

L15-16

!  Perform I/O functions common to all devices
!  Provide common interface to user programs
!  Uniform interface

!  device driver
!  I/O device naming (e.g. D: or /dev/disk0)
!  device protection

!  Buffering: making data available in expected sizes
!  Error reporting
!  Managing requests for devices

Fi
le

 S
ys

te
m

s

17
 User-Space I/O Software

L15-17

!  System calls that allow interaction with device
!  e.g. read, write, print, scanf

!  Implemented as part of a library
!  May also perform formatting or spooling

!  formatting: printf(“[%d,%d]”,i,j)
!  spooling: collect data from multiple processes and handle one

by one

Fi
le

 S
ys

te
m

s

18
 I/O Software Layers Example

L15-18 Fi
le

 S
ys

te
m

s

User-level I/O software
(write to file D:\test.txt)

Device-independent operating system software
(which disk is D:)

Device drivers
(issue commands to disk)

Interrupt handlers
(wake up driver when command complete)

Hardware

19
 References

!  Chapter 5.1-5.3, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4th Edition.

Fi
le

 S
ys

te
m

s

L15-19

20
 What Next?

L15-20

!  Finish reading the partially covered chapters

!  Chapter 8: How basic concepts differ in multiple
processor systems?

!  Case studies: How real world operating systems
implement the basic concepts?
!  Chapter 10: Linux
!  Chapter 11: Windows

Fi
le

 S
ys

te
m

s

