Device Management

COMP 3361: Operating Systems I

Winter 2015
http:/ /www.cs.du.edu/3361

] I/0O Devices

» Block devices
stores information in fixed-size blocks
transfers are in units of entire blocks
example: hard disk

» Character devices

delivers or accepts stream of characters, without regard to
block structure

not addressable, does not have any seek operation

example: printer

» Others

example: clocks

L15-1

2 I/0O Device Speed
Device Data rate

Keyboard 10 bytes/sec
Mouse 100 bytes/sec
56K modem 7 KB/sec
Scanner at 300 dpi 1 MB/sec
Digital camcorder 3.5 MB/sec
4x Blu-ray disc 18 MB/sec
802.11n Wireless 37.5 MB/sec
USB 2.0 60 MB/sec
FireWire 800 100 MB/sec
Gigabit Ethernet 125 MB/sec
SATA 3 disk drive 600 MB/sec
USB 3.0 625 MB/sec
SCSI Ultra 5 bus 640 MB/sec
Single-lane PCle 3.0 bus | 985 MB/sec
Thunderbolt 2 bus 2.5 GB/sec
SONET OC-768 network 5 GB/sec

L15-2

3 Device Controller

» An electronic component that talks to the device

» Language is standardized

SATA, SCSI, USB, Thunderbolt, ...
device can be built independent of controller

send/receive SATA communication

commands from CPU

SATA Disk Controller SATA Disk

(position disk parts, read/write bit streams)

L15-3

File Systems

4 Talking to a Controller

» Each controller has a few control registers

controller responds to data (commands) written to the
registers

» Controller can also has data registers and buffers

used to hold data intermediately during transit from memory
to device
OS can read from the data buffers

devices can also have buffers; OS can trigger controller to
read device buffer to memory

L15-4

5 Talking to a Controller

» 1/O port: controller registers are assigned specific
numbers
OS can read in and write to the controller’s registers using
the numbers
» Memory-mapped 1/O: controller registers/buffers are
mapped to specific physical memory address range
OS reads in and writes to memory region

controller writes to and reads in from memory region

address bus

File Systems

LI15-5

6 Memory-Mapped I/O

» Can communicate with device controllers with memory
read/write

no assembly coding necessary

» OS can allow a user program to control a device
set up page tables accordingly

» All instructions that can access memory can access
devices

can easily check state of registers; instead of first reading it to
a memory location and then checking

» Must be able to selectively disable memory caching

L15-6

: Reading From Disk

uint8_t read_disk(uint32_t LBA, uint8_t n_sectors, uint8_t xbuffer) {
uint8_t status;
int 1i;
uintl6_t sectors_to_read;
uint16_t xdata = (uintl6_t x)buffer;

// LBA mode (bit 6) and highest four bits of LBA (bit 7 and 5 are always set)
port_write_byte(0x1F6, OxEQ | ((LBA >> 24) & 0OxOF));

port_write_byte(0x1F1,0x00); // NULL byte
port_write_byte(0x1F2,n_sectors); // sector count
port_write_byte(@0x1F3, (uint8_t)LBA); // low 8 bits of LBA

port_write_byte(@x1F4, (uint8_t)(LBA>>8)); // next 8 bits of LBA
port_write_byte(0x1F5, (uint8_t) (LBA>>16)); // next 8 bits of LBA
port_write_byte(0x1F7,0x20); // send READ SECTORS command

sectors_to_read = (n_sectors==0)?256:n_sectors;

for (; sectors_to_read>0; sectors_to_read——) {
// poll for readiness

// read one sector
for(i=0; i<256; i++) {

datal[i] = port_read_word(0x1FQ); // read one word (2 bytes)
¥

data += 256;

}
return NO_ERROR;

L15-7

8 Using a DMA Controller

@ _«— Drive

1.CPU '

programs DMA Disk Main
CPU the DMA controller controller memory

controller P Buffer

L
7 N
[Control | | 4.Ack 0
, [~

Interrupt when

done

| 4
2. DMA requests
transfer to memory

(—->
—-

k3. Data transferred y

- Bus

L15-8

9 Interrupt Controller

» Interrupts generated by devices are read by the
interrupt controller
devices assert a signal on an assigned interrupt line

controller looks out for these signals

» Interrupt controller puts a number on address lines and
asserts the interrupt line going to the CPU

» Service routine notifies controller of service completion
by writing to a special port of the controller

controller can notify device of service completion and attend
to a pending interrupt from another device

L15-9

] O Programmed I/O

» CPU determines if device is available and issues
commands to controller for every byte/word it needs to
read/write

example: slide 7

copy_from_user(buffer, p, count); /* p is the kernel buffer */

for (i=0; i < count; i++) { /* loop on every character */
while (*printer_status_reg != READY) ; /* loop until ready */
printer_data_register = p[i]; / output one character */

}

return_to_user();

printing using programmed /O

LI5-10

]] Interrupt-Driven I/O

» Remove polling or busy waiting
is the device ready for next command! ...
» Can be used if controllers can (be programmed to)
generate an interrupt on command completion
controller notifies CPU when command completes

CPU then carries out next command

copy_from_user(buffer, p, count); if (count == 0) {
enable_interrupts(); unblock_user();
while (*printer_status_reg != READY) ; } else {
*printer_data_register = p[0]; *printer_data_register = p[i];
scheduler(); count = count — 1;

i=i+1;

}

acknowledge_interrupt();
return_from_interrupt();

printing first character printer interrupt service routine

LI5-11

] 2 I/0O Using DMA

» Interrupt-drive I/O requires interrupt handling for every
byte/word of data
» Programmed |/O, but with hardware (DMA) support

let DMA controller talk to device controller and transfer
data (whatever the DMA controller’s buffer can hold)

DMA controller issues interrupt to CPU when buffer is full

copy_from_user(buffer, p, count); acknowledge_interrupt();
set_up_DMA_controller(); unblock_user();
scheduler(); return_from_interrupt();

set up DMA DMA interrupt service routine

(assuming DMA buffer is big enough to hold all data)

LI5-12

1

LI5-13

3 I/O Software Layers

» What software layers are involved in accessing
hardware?

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

1

LI5-14

4 Interrupt Handler

» Interrupts are mechanisms for controllers to inform
CPU of an event ("l finished the task you assigned”)

» Interrupt handlers run when interrupts are generated

» OS responsibilities
Save process state

set up execution environment for handler
run handler

restore state

] 5 Device Driver

» Device controllers expect commands from the CPU

» What commands will do what!?
specific to device

» Device driver: program that knows what commands to
issue to extract a specific functionality from a specific
device controller

e.g.:command to obtain disk size from a SATA disk controller

» Runs as part of the kernel
OS can implement drivers

allow for their installation; OS defines standard interface that
it will use to interact with the drivers

LI5-15

1 6 Device-Independent I/O Software

» Perform |I/O functions common to all devices

v

Provide common interface to user programs

Uniform interface

h 4

device driver
I/O device naming (e.g. D: or /dev/disk0)

device protection

» Buffering: making data available in expected sizes

v

Error reporting

h 4

Managing requests for devices

LI5-16

] : User-Space I/0 Software

» System calls that allow interaction with device
e.g. read, write, print, scanf

» Implemented as part of a library

» May also perform formatting or spooling
formatting: printf(“[%d,%d]”,1i,7)
spooling: collect data from multiple processes and handle one
by one

LI5-17

1 8 I/O Software Layers Example

User-level I/O software
(write to file D:\test.txt)

Device-independent operating system software
(which disk is D:)

Device drivers
(issue commands to disk)

Interrupt handlers
(wake up driver when command complete)

Hardware

LI5-18

1 g References

» Chapter 5.1-5.3, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4" Edition.

LI5-19

2 O What Next?

» Finish reading the partially covered chapters

» Chapter 8: How basic concepts differ in multiple
processor systems?

» Case studies: How real world operating systems
implement the basic concepts!?

Chapter 10: Linux
Chapter | I:Windows

L15-20

