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 I/O Devices 

L15-1 

!  Block devices 
!  stores information in fixed-size blocks 
!  transfers are in units of entire blocks 
!  example: hard disk 

!  Character devices 
!  delivers or accepts stream of characters, without regard to 

block structure 
!  not addressable, does not have any seek operation 
!  example: printer 

!  Others 
!  example: clocks  
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 I/O Device Speed 
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 Device Controller 
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!  An electronic component that talks to the device 
!  Language is standardized 

!  SATA, SCSI, USB, Thunderbolt, … 
!  device can be built independent of controller  
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SATA communication send/receive 
commands from CPU 

SATA Disk Controller 
(position disk parts, read/write bit streams) 

SATA Disk 
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 Talking to a Controller 
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!  Each controller has a few control registers 
!  controller responds to data (commands) written to the 

registers 

!  Controller can also has data registers and buffers 
!  used to hold data intermediately during transit from memory 

to device 
!  OS can read from the data buffers 
!  devices can also have buffers; OS can trigger controller to 

read device buffer to memory 

Fi
le

 S
ys

te
m

s 



5
 Talking to a Controller 
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!  I/O port: controller registers are assigned specific 
numbers  
!  OS can read in and write to the controller’s registers using 

the numbers 

!  Memory-mapped I/O: controller registers/buffers are 
mapped to specific physical memory address range 
!  OS reads in and writes to memory region 
!  controller writes to and reads in from memory region 
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address bus 
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 Memory-Mapped I/O 
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!  Can communicate with device controllers with memory 
read/write 
!  no assembly coding necessary 

!  OS can allow a user program to control a device 
!  set up page tables accordingly 

!  All instructions that can access memory can access 
devices 
!  can easily check state of registers; instead of first reading it to 

a memory location and then checking 

!  Must be able to selectively disable memory caching 
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 Reading From Disk 
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uint8_t read_disk(uint32_t LBA, uint8_t n_sectors, uint8_t *buffer) { 
uint8_t status; 
int i; 
uint16_t sectors_to_read; 
uint16_t *data = (uint16_t *)buffer; 
... 
// LBA mode (bit 6) and highest four bits of LBA (bit 7 and 5 are always set) 
port_write_byte(0x1F6, 0xE0 | ((LBA >> 24) & 0x0F));  

port_write_byte(0x1F1,0x00); // NULL byte 
port_write_byte(0x1F2,n_sectors); // sector count 
port_write_byte(0x1F3,(uint8_t)LBA); // low 8 bits of LBA 
port_write_byte(0x1F4,(uint8_t)(LBA>>8)); // next 8 bits of LBA 
port_write_byte(0x1F5,(uint8_t)(LBA>>16)); // next 8 bits of LBA 
port_write_byte(0x1F7,0x20); // send READ SECTORS command 

sectors_to_read = (n_sectors==0)?256:n_sectors; 

for (; sectors_to_read>0; sectors_to_read--) { 
// poll for readiness 
... 
// read one sector 
for(i=0; i<256; i++) { 

data[i] = port_read_word(0x1F0); // read one word (2 bytes) 
} 
data += 256; 
... !

} 
return NO_ERROR; 

} 
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 Using a DMA Controller 
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 Interrupt Controller 
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!  Interrupts generated by devices are read by the 
interrupt controller 
!  devices assert a signal on an assigned interrupt line  
!  controller looks out for these signals 

!  Interrupt controller puts a number on address lines and 
asserts the interrupt line going to the CPU 

!  Service routine notifies controller of service completion 
by writing to a special port of the controller 
!  controller can notify device of service completion and attend 

to a pending interrupt from another device 
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 Programmed I/O 
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!  CPU determines if device is available and issues 
commands to controller for every byte/word it needs to 
read/write 
!  example:  slide 7 
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printing using programmed I/O 
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 Interrupt-Driven I/O 
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!  Remove polling or busy waiting 
!  is the device ready for next command? … 

!  Can be used if controllers can (be programmed to) 
generate an interrupt on command completion 
!  controller notifies CPU when command completes 
!  CPU then carries out next command 
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printing first character printer interrupt service routine 
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 I/O Using DMA 

L15-12 

!  Interrupt-drive I/O requires interrupt handling for every 
byte/word of data  

!  Programmed I/O, but with hardware (DMA) support 
!  let DMA controller talk to device controller and transfer 

data (whatever the DMA controller’s buffer can hold) 
!  DMA controller issues interrupt to CPU when buffer is full 
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set up DMA DMA interrupt service routine 
(assuming DMA buffer is big enough to hold all data) 
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 I/O Software Layers 
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!  What software layers are involved in accessing 
hardware? 
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User-level I/O software 

Device-independent operating system software 

Device drivers 

Interrupt handlers 

Hardware 
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 Interrupt Handler 
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!  Interrupts are mechanisms for controllers to inform 
CPU of an event (“I finished the task you assigned”) 

!  Interrupt handlers run when interrupts are generated 

!  OS responsibilities 
!  save process state 
!  set up execution environment for handler 
!  run handler 
!  restore state 
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 Device Driver 
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!  Device controllers expect commands from the CPU 
!  What commands will do what? 

!  specific to device 

!  Device driver: program that knows what commands to 
issue to extract a specific functionality from a specific 
device controller 
!  e.g.: command to obtain disk size from a SATA disk controller 

!  Runs as part of the kernel 
!  OS can implement drivers 
!  allow for their installation; OS defines standard interface that 

it will use to interact with the drivers 
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 Device-Independent I/O Software 
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!  Perform I/O functions common to all devices 
!  Provide common interface to user programs 
!  Uniform interface 

!  device driver 
!  I/O device naming (e.g. D: or /dev/disk0) 
!  device protection 

!  Buffering: making data available in expected sizes 
!  Error reporting 
!  Managing requests for devices 
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 User-Space I/O Software 
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!  System calls that allow interaction with device 
!  e.g. read, write, print, scanf 

!  Implemented as part of a library 
!  May also perform formatting or spooling 

!  formatting: printf(“[%d,%d]”,i,j)
!  spooling: collect data from multiple processes and handle one 

by one
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 I/O Software Layers Example 

L15-18 Fi
le

 S
ys

te
m

s 

User-level I/O software 
(write to file D:\test.txt) 

Device-independent operating system software 
(which disk is D:) 

Device drivers 
(issue commands to disk) 

Interrupt handlers 
(wake up driver when command complete) 

Hardware 
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 References 

!  Chapter 5.1-5.3, Modern Operating Systems,  A. 
Tanenbaum and H. Bos, 4th Edition. 
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L15-19 
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 What Next? 

L15-20 

!  Finish reading the partially covered chapters 

!  Chapter 8: How basic concepts differ in multiple 
processor systems? 

!  Case studies: How real world operating systems 
implement the basic concepts? 
!  Chapter 10: Linux 
!  Chapter 11: Windows 
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