
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

Processes

1
 What is a Process?

!  A process is a program in execution

!  A program by itself is not a process

!  A process also includes
!  a program counter
!  a stack
!  a data section
!  often a heap
!  a process identifier (PID)
!  ...

L2-1 Pr
oc

es
se

s

2
 Process Address Space

Stack

Heap (dynamically allocated memory)

Data (global variables)

Text (executable instructions)

max

0

L2-2 Pr
oc

es
se

s

3
 Program to Process

a C source file executable
binary

compile
link

program : a passive entity

executable
module

OS loads
the
program
into
memory

the program now has
physical addresses

program
counter, process

ID, process
state, etc.

OS adds other
information to its
data structures

the OS can now track the
progress of the loaded

program

a process

an active entity

L2-3 Pr
oc

es
se

s

4
 Parallel Execution of Processes

L2-4 Pr
oc

es
se

s

Process
A

Process
B

Process
C

Process
D

EIP EIP EIP EIP

Four independent processes, each with its own program counter

5
 Multiprogramming

L2-5

!  But, a single-core single CPU has only one program
counter (EIP register)

!  Creating the illusion of parallel execution
!  each process has its logical program counter (stored in

memory)
!  the value is loaded on the physical program counter before

the process runs
!  when the CPU decides to run another process, the physical

value is written to the logical program counter
!  overtime, all processes will make progress

!  Only one process is running at any point in time!

Pr
oc

es
se

s

6
 When are Processes Created

L2-6

!  During system initialization
!  usually to handle one or more system level task

!  One process issues a system call to create another
process
!  division of work

!  User actions trigger the creation of a new process
!  command line or GUI based action to run a program

!  Initiation of a batch job
!  execution of some queued task

Pr
oc

es
se

s

7
 UNIX Process Creation

!  A process can create a new process using fork()
!  Calling process becomes the parent, and the created

process is the child
!  What happens on a fork()?

!  child receives a copy of the parent’s memory image
!  return value is

!  zero in the child process
!  the child’s process identifier (PID) in the parent process
!  negative value indicates error

!  both processes independently resume execution at the
instruction after the fork

L2-7 Pr
oc

es
se

s

8
 fork()

…
…

id = fork();
…
…

…
…

id = fork();
…
…

results in

parent child

id is xyz here id is zero here

point	
 of	

entry	

two distinct processes

PID = abc PID = xyz

L2-8 Pr
oc

es
se

s

9
 C fork Example

#include <unistd.h>

int main()
{

 pid_t pid;
 /* fork another process */
 pid = fork();

 if (pid < 0) { /* error occurred */
 …
 }
 else if (pid == 0) { /* child process */
 …
 }
 else { /* parent process */
 …
 }

}

L2-9 Pr
oc

es
se

s

10
 Process Tree

for (i=1; i<4; i++) {
 childpid = fork();
 if (childpid == -1) break;

}

L2-10 Pr
oc

es
se

s

11
 Process State

!  A process changes state as it executes
!  running: instructions are being executed
!  blocked: the process is waiting for some event to occur
!  ready: the process is waiting to be assigned to a processor

!  One running per CPU; many ready and waiting

L2-11 Pr
oc

es
se

s

12
 Transitioning Between States

running

blocked

ready

admitted
terminated interrupt

scheduler dispatch

I/O or event wait I/O or event completion

L2-12 Pr
oc

es
se

s

13
 Process Control Block (PCB)

!  The operating systems maintains all information related
to a process in a data structure called the process
control block (PCB)

!  Information associated with each process includes
!  process ID and state
!  program counter
!  CPU registers
!  CPU-scheduling information
!  memory management information
!  accounting information
!  I/O status information
!  ...

L2-13 Pr
oc

es
se

s

14
 A Very Simple PCB

L2-14 Pr
oc

es
se

s

/*** Process Control Block (everything about a process) ***/
typedef struct process_control_block {

struct {
uint32_t ss;
uint32_t cs;
uint32_t esp;
uint32_t ebp;

 uint32_t eip;
uint32_t eflags;
uint32_t eax;
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t esi;
uint32_t edi;

} cpu;

uint32_t pid;
enum {NEW, READY, RUNNING, WAITING, TERMINATED} state;
uint32_t sleep_end;

struct process_control_block *prev_PCB, *next_PCB;

struct {
uint32_t start_code;
uint32_t end_code;

 uint32_t start_brk;
uint32_t brk;
uint32_t start_stack;
PDE *page_directory;

} mem;

struct {
uint32_t LBA;
uint32_t n_sectors;

} disk;
} __attribute__ ((packed)) PCB;

PCB process_table[100];

 or

PCB *process_table_head;

15
 Switch Between Processes

process 0 operating system process 1

save state into PCB0

reload state from PCB1

save state into PCB1

reload state from PCB0

interrupt or system call

interrupt or system call

..

..

executing

executing

executing id
le

id
le

id

le

L2-15 Pr
oc

es
se

s

16
 A System Call Handler

L2-16 Pr
oc

es
se

s

asm("handler_syscall_0X94_entry: \n" // no interruption until done
// CPU would have already pushed these in order:
// SS, ESP, EFLAGS, CS and EIP of calling process
// Push EAX, EBX, ECX, EDX (system call arguments)
"pushal\n"
"movl %esp, %ecx\n"
"call handler_syscall_0X94\n"

);
__attribute__((fastcall)) void handler_syscall_0X94(void) {

// reload stack pointer (discards C function prologue)
asm volatile ("movl %ecx, %esp\n");

// must reset the segment selectors before
// accessing any kernel data
asm volatile ("movl $0x10, %eax\n"

 "movl %eax, %ds\n"
 "movl %eax, %es\n"
 "movl %eax, %fs\n"
 "movl %eax, %gs\n");

// save CPU state in process PCB
asm volatile ("movl %%esp, %0\n": "=r"(current_process->cpu.edi));
asm volatile ("movl 4(%%esp), %0\n": "=r"(current_process->cpu.esi));
asm volatile ("movl 8(%%esp), %0\n": "=r"(current_process->cpu.ebp));
asm volatile ("movl 16(%%esp), %0\n": "=r"(current_process->cpu.ebx));
asm volatile ("movl 20(%%esp), %0\n": "=r"(current_process->cpu.edx));
asm volatile ("movl 24(%%esp), %0\n": "=r"(current_process->cpu.ecx));
asm volatile ("movl 28(%%esp), %0\n": "=r"(current_process->cpu.eax));
asm volatile ("movl 32(%%esp), %0\n": "=r"(current_process->cpu.eip));
asm volatile ("movl 36(%%esp), %0\n": "=r"(current_process->cpu.cs));
asm volatile ("movl 40(%%esp), %0\n": "=r"(current_process->cpu.eflags));
asm volatile ("movl 44(%%esp), %0\n": "=r"(current_process->cpu.esp));
asm volatile ("movl 48(%%esp), %0\n": "=r"(current_process->cpu.ss));

execute_0x94(); // handle system call

schedule_something(); // call scheduler to pick a process
}

SS

ESP

EFLAGS

CS

EIP

current ESP

*

st
ac

k

EAX

ECX

EDX

EBX

*

EBP

ESI

EDI

17
 Multiprogramming Model

L2-17

!  n processes, each spending a fraction p of its time
waiting for I/O

!  Probability that all processes are waiting: pn

!  CPU utilization: (1-pn)

Pr
oc

es
se

s

18
 Process Termination

!  Process executes last statement and asks the operating
system to delete it
!  via a system call automatically inserted by the compiler
!  process’ resources are de-allocated by operating system

!  A process may also be terminated
!  due to an error
!  another process issued a system call to terminate it
!  cascading termination

L2-18 Pr
oc

es
se

s

19
 References

L2-19

!  Chapter 2.1, Modern Operating Systems, A. Tanenbaum
and H. Bos, 4th Edition.

Pr
oc

es
se

s

