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Processes 



1
 What is a Process? 

!  A process is a program in execution 

!  A program by itself is not a process 

!  A process also includes 
!  a program counter 
!  a stack 
!  a data section 
!  often a heap 
!  a process identifier (PID) 
!  ...  
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 Process Address Space 

Stack 

Heap (dynamically allocated memory) 

Data (global variables) 

Text (executable instructions) 
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 Program to Process 

a C source file executable 
binary 

compile 
link 

program : a passive entity  

executable 
module 

OS loads 
the 
program 
into 
memory 

the program now has 
physical addresses 

program 
counter, process 

ID, process 
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OS adds other 
information to its 
data structures 

the OS can now track the 
progress of the loaded 

program 

a process 

an active entity  
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 Parallel Execution of Processes 
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Four independent processes, each with its own program counter 
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 Multiprogramming 
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!  But, a single-core single CPU has only one program 
counter (EIP register) 

!  Creating the illusion of parallel execution 
!  each process has its logical program counter (stored in 

memory) 
!  the value is loaded on the physical program counter before 

the process runs 
!  when the CPU decides to run another process, the physical 

value is written to the logical program counter 
!  overtime, all processes will make progress 

!  Only one process is running at any point in time! 
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 When are Processes Created 
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!  During system initialization 
!  usually to handle one or more system level task 

!  One process issues a system call to create another 
process 
!  division of work 

!  User actions trigger the creation of a new process 
!  command line or GUI based action to run a program 

!  Initiation of a batch job 
!  execution of some queued task 
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7
 UNIX Process Creation 

!  A process can create a new process using fork() 
!  Calling process becomes the parent, and the created 

process is the child 
!  What happens on a fork()? 

!  child receives a copy of the parent’s memory image 
!  return value is  

!  zero in the child process 
!  the child’s process identifier (PID) in the parent process 
!  negative value indicates error 

!  both processes independently resume execution at the 
instruction after the fork 
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 fork() 

… 
… 

id = fork(); 
… 
… 

… 
… 

id = fork(); 
… 
… 

results in  

parent child 

id is xyz here id is zero here 

point	
  of	
  
entry	
  

two distinct processes 

PID = abc PID = xyz 
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9
 C fork Example 

#include <unistd.h> 

int main() 
{ 

 pid_t  pid; 
 /* fork another process */ 
 pid = fork(); 

 if (pid < 0) { /* error occurred */ 
  … 
 } 
 else if (pid == 0) { /* child process */ 
  … 
 } 
 else { /* parent process */ 
  … 
 } 

} 
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 Process Tree 

for (i=1; i<4; i++) { 
 childpid = fork(); 
 if (childpid == -1) break; 

} 
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 Process State 

!  A process changes state as it executes 
!  running: instructions are being executed 
!  blocked: the process is waiting for some event to occur 
!  ready: the process is waiting to be assigned to a processor 

!  One running per CPU; many ready and waiting 
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 Transitioning Between States 

running 

blocked 

ready 

admitted 
terminated interrupt 

scheduler dispatch 

I/O or event wait I/O or event completion 
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 Process Control Block (PCB) 

!  The operating systems maintains all information related 
to a process in a data structure called the process 
control block (PCB) 

!  Information associated with each process includes 
!  process ID and state 
!  program counter 
!  CPU registers 
!  CPU-scheduling information 
!  memory management information 
!  accounting information 
!  I/O status information 
!  ... 
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 A Very Simple PCB 
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/*** Process Control Block (everything about a process) ***/
typedef struct process_control_block {

struct {
uint32_t ss;
uint32_t cs;     
uint32_t esp; 
uint32_t ebp;     

 uint32_t eip;
uint32_t eflags;
uint32_t eax;
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t esi;
uint32_t edi;

} cpu;   

uint32_t pid;
enum {NEW, READY, RUNNING, WAITING, TERMINATED} state;
uint32_t sleep_end;

struct process_control_block *prev_PCB, *next_PCB; 

struct {
uint32_t start_code;
uint32_t end_code;

 uint32_t start_brk;
uint32_t brk;
uint32_t start_stack;
PDE *page_directory;

} mem;

struct {
uint32_t LBA;
uint32_t n_sectors;

} disk;
} __attribute__ ((packed)) PCB;

PCB process_table[100];

         or 

PCB *process_table_head;
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 Switch Between Processes 

process 0                     operating system                     process 1  

save state into PCB0 

reload state from PCB1 

save state into PCB1 

reload state from PCB0 

interrupt or system call 

interrupt or system call 

.. 

.. 
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executing id
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 A System Call Handler 
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asm("handler_syscall_0X94_entry: \n" // no interruption until done
// CPU would have already pushed these in order:
// SS, ESP, EFLAGS, CS and EIP of calling process
// Push EAX, EBX, ECX, EDX (system call arguments)
"pushal\n"
"movl %esp, %ecx\n"
"call handler_syscall_0X94\n"

);
__attribute__((fastcall)) void handler_syscall_0X94(void) {

// reload stack pointer (discards C function prologue)
asm volatile ("movl %ecx, %esp\n");

// must reset the segment selectors before
// accessing any kernel data
asm volatile ("movl $0x10, %eax\n"

      "movl %eax, %ds\n"
      "movl %eax, %es\n"
      "movl %eax, %fs\n"
      "movl %eax, %gs\n");

// save CPU state in process PCB 
asm volatile ("movl %%esp, %0\n": "=r"(current_process->cpu.edi));
asm volatile ("movl 4(%%esp), %0\n": "=r"(current_process->cpu.esi));
asm volatile ("movl 8(%%esp), %0\n": "=r"(current_process->cpu.ebp));
asm volatile ("movl 16(%%esp), %0\n": "=r"(current_process->cpu.ebx));
asm volatile ("movl 20(%%esp), %0\n": "=r"(current_process->cpu.edx));
asm volatile ("movl 24(%%esp), %0\n": "=r"(current_process->cpu.ecx));
asm volatile ("movl 28(%%esp), %0\n": "=r"(current_process->cpu.eax));
asm volatile ("movl 32(%%esp), %0\n": "=r"(current_process->cpu.eip));
asm volatile ("movl 36(%%esp), %0\n": "=r"(current_process->cpu.cs));
asm volatile ("movl 40(%%esp), %0\n": "=r"(current_process->cpu.eflags));
asm volatile ("movl 44(%%esp), %0\n": "=r"(current_process->cpu.esp));
asm volatile ("movl 48(%%esp), %0\n": "=r"(current_process->cpu.ss));

execute_0x94(); // handle system call

schedule_something(); // call scheduler to pick a process
}
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 Multiprogramming Model 
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!  n processes, each spending a fraction p of its time 
waiting for I/O 

!  Probability that all processes are waiting: pn

!  CPU utilization: (1-pn)
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 Process Termination 

!  Process executes last statement and asks the operating 
system to delete it 
!  via a system call automatically inserted by the compiler 
!  process’ resources are de-allocated by operating system 

!  A process may also be terminated 
!  due to an error 
!  another process issued a system call to terminate it 
!  cascading termination 
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