Threads

COMP 3361: Operating Systems I

Winter 2015
http:/ /www.cs.du.edu/3361

L3-1

Single Thread of Control

int numbers[10000007];
long even sum;
long odd_sum;

QR =S UM~ = -add —eVenR{Humbe ts 5 1.00-0-00.0.) 7
- 0dd- -sum -=- add--0dds ¢ pumbers -1 0.0-00-0-0-)-

long add evens(int *numbers, int size) ({

int i;

long sum = 0;

for (i=0; i<size; i+=2) {
sum += numbers[i];

}

return sum;

}

long add odds(int *numbers, int size) {
int i;
long sum = 0;
for (i=1; i<size; i+=2) {
sum += numbers[i];

}

return sum;
| ‘T

control flow (a single thread of control)

Two Threads of Control

int numbers[10000007];
long even_ sum;
long odd_sum;

long add_evens(int *numbers, int size)
int i;

long sum = 0;

for (i=0; i<size; i+=2) {
sum += numbers[i];

return sum;

}

long add odds(int *numbers,
int i;

long sum = 0;

for (i=1; i<size;

{

int size)

two threads of control

L3-2

Threads

3 Threads

» A process by default has a single flow of control
a single thread of control

» A task can be parallelized by spawning multiple
processes

the processes communicate with help from the kernel

» Another method is to have multiple flows of control in a
process

each flow of control is a thread

L3-3

4 Web Server with Single Thread

client A server client B
request
}fetching page from
cache/disk (CPU is idle)
st
se eque
respO” red } server busy
(]
I
g esponse

L3-4

L3-5

Web Server with Multiple Processes

client A childserver, server childserver, client B

request

process
creation

Slow; process creation and deletion have high overhead

6 Web Server with Multiple Threads

client A server client B

request

request
c
reS\DO“S

1 "espon
\/ \/ se

L3-6

: Why Use Threads?

» Multiprogramming

but shared address space (one thread can access data of
another)

» Lighter weight than processes
threads carry less state information than processes

threads are sometimes called lightweight processes

» Performance
overlap CPU bound and I/O bound tasks of a process

» Scalability

multithreaded processes can occupy multiple CPUs

L3-7

L3-8

EIP,
ESP,
EAX,
EBX,

Single-Threaded vs. Multithreaded

resources

code

data

heap

execution environment

|| CPU registers

state

thread —»g

single-threaded process

resources
code | data || heap
execution execution execution
environment | | environment 2| environment 3
CPU CPU CPU
registers registers registers
state state state
thread | thread 2 thread 3

multithreaded process

9 Concurrent Execution of Threads

core | T, T, T, T, T, T, T, T, T,

single-core system

core | T| T3 T| T2 T3

core2 | T, | T, | T3 | T, | T,

multicore system

L3-9

1 O POSIX Pthreads

» Only a standard that defines an API for thread creation
and management

» Native POSIX Thread Library (NPTL) is an

implementation of the specification in most Linux
systems

L3-10

1 1 Some Common Functions

» pthread create :create a thread

» pthread_join :wait for a thread to finish

» pthread cancel :terminate another thread

» pthread yield :relinquish CPU

» pthread exit :exit the thread (same as return)

L3-11

] 2 Example

#include <pthread.h>
#include <stdio.h>

void *add_evens(void *data);
void *add_odds(void *data);

/* argument to pass to threads */
typedef struct {

int *numbers;

int size;
} ID;

int main() {
int numbers[10] = {1,2,3,4,5,6,7,8,9,10};
long odd_sum, even_sum;

pthread_t tidl, tid2; /* thread identifiers */
TD r;
r.numbers = numbers;

r.size = 10;

/* create thread */

pthread_create(&tidl, NULL, add_evens, &r);

pthread create(&tid2, NULL, add _odds, &r); (continued on next slide)

L3-12

] 3 Example (Contd...)

/* wait for thread */
pthread_join(tidl, (void *)&even_sum);
pthread join(tid2, (void *)&odd_sum);

printf("sum = %$1d\n",even_sumtodd sum);

}

void *add_odds(void *arg) {
int i;
long sum = 0;
TD *r = (TD *)arg;

for (i=1l; i<r->size; i+=2) sum += r->numbers[i];
return (void *)sum;

}

void *add_evens(void *arg) {
int i;
long sum = 0;
TD *r = (TD *)arg;

for (i=0; i<r->size; i+=2) sum += r->numbers[i];
return (void *)sum;

L3-13

1 4 Implementing Threads in User Space

Process A Thread
S /
» When process A runs, code in one of
\, the threads run
» When the running thread makes a
User space — §§ g g thread-specific function call, run-time
= = system gets control

» Run-time system can switch to another
thread (fast because no system call)

B / \ saves CPU state in thread table
Kernel space — Kernel %

picks another ready thread for running

—

\ loads CPU with the state of chosen thread
Thread run-time Thread Process
system ¢abl table
(a library that runs along able
with user program) Y

These steps happen during the time the CPU is
allocated to process A.
What happens if process A is in blocked state?

L3-14

1 5 Implementing Threads in Kernel Space

User space —

Kernel space —

—

L3-15

Process A Thread

\\ Z/
$35 $%

Kernel %
Pl

/|

Thread Protc):less
table table

When process A runs, code in one of
the threads run

When the running thread makes a

system call, scheduler in the kernel gets
control

Scheduler can switch to another thread
of same process, or to a different
process

1 6 Scheduler Activations

» A scheme for communication between user-thread
library and the kernel
kernel provides virtual processors to run-time system
virtual processors: kernel threads that the OS allocates the CPU to
user-level threads are scheduled onto an available virtual
processor by the run-time system

a blocked thread on a virtual processor is wastage of
allocated resources

» Scheduler activations provide upcalls

a way of notifying the thread runtime system about interesting
activities in the threads
e.g.a thread has blocked/unblocked

L3-16

] : Threading Issues

» Need thread-wide global variables

variables seen by any procedure in a thread, but not in
another thread

» Many library procedures are not re-entrant

when interrupted and then resumed, return value of
procedure will be unreliable if another thread called the
procedure in the meantime

» Signal handling

signals are notifications from the kernel about interesting
events (e.g. CTRL+C is pressed)

process registers signal handler with OS

» Stack management

how will the kernel manage thread stacks?

L3-17

] 8 References

» Chapter 2.2, Modern Operating Systems, A.Tanenbaum
and H. Bos, 4" Edition.

L3-18

