
COMP 3361: Operating Systems I 
Winter 2015 

http://www.cs.du.edu/3361 

Threads 



1
 Single Thread of Control 

T
hr

ea
ds

 

...
int numbers[1000000];
long even_sum;
long odd_sum;
...
even_sum = add_even(numbers,1000000);
odd_sum = add_odds(numbers, 1000000);

...

long add_evens(int *numbers, int size) {
int i;
long sum = 0;
for (i=0; i<size; i+=2) {

sum += numbers[i];
}
return sum;

}

long add_odds(int *numbers, int size) {
int i;
long sum = 0;
for (i=1; i<size; i+=2) {

sum += numbers[i];
}
return sum;

}

control flow (a single thread of control) 

L3-1 



2
 Two Threads of Control 

T
hr

ea
ds

 

...
int numbers[1000000];
long even_sum;
long odd_sum;
...
...
...

long add_evens(int *numbers, int size) {
int i;
long sum = 0;
for (i=0; i<size; i+=2) {

sum += numbers[i];
}
return sum;

}

long add_odds(int *numbers, int size) {
int i;
long sum = 0;
for (i=1; i<size; i+=2) {

sum += numbers[i];
}
return sum;

}

two threads of control 

L3-2 



3
 Threads 

!  A process by default has a single flow of control 
!  a single thread of control 

!  A task can be parallelized by spawning multiple 
processes 
!  the processes communicate with help from the kernel 

!  Another method is to have multiple flows of control in a 
process 
!  each flow of control is a thread 

T
hr

ea
ds

 

L3-3 



4
 Web Server with Single Thread 

client A                             server                           client B 

request 

response request 

response tim
e 

server busy 

T
hr

ea
ds

 

fetching page from 
cache/disk (CPU is idle) 

L3-4 



5
 Web Server with Multiple Processes 

client A     childserverA      server     childserverB     client B 

request 

request 

response 

T
hr

ea
ds

 

Slow; process creation and deletion have high overhead 

process 
creation 

L3-5 



6
 Web Server with Multiple Threads 

client A                             server                           client B 

request 

response 
request 

response 

T
hr

ea
ds

 

L3-6 



7
 Why Use Threads? 

!  Multiprogramming 
!  but shared address space (one thread can access data of 

another) 

!  Lighter weight than processes 
!  threads carry less state information than processes 
!  threads are sometimes called lightweight processes 

!  Performance 
!  overlap CPU bound and I/O bound tasks of a process 

!  Scalability 
!  multithreaded processes can occupy multiple CPUs 

T
hr

ea
ds

 

L3-7 



8
 Single-Threaded vs. Multithreaded 

code data heap 

CPU registers CPU 
registers 

single-threaded process multithreaded process 

thread 

T
hr

ea
ds

 

resources 

execution environment 

... code data heap ... 
resources 

execution 
environment 1 

execution 
environment 2 

execution 
environment 3 

thread 1 thread 2 thread 3 

state 

state 

EIP, 
ESP, 
EAX, 
EBX, 
... 

CPU 
registers 

state 

CPU 
registers 

state 

L3-8 



9
 Concurrent Execution of Threads 

T1 T2 T3 T4 T1 T2 T3 T4 T1 … 

T1 T3 T1 T2 T3 … 

T2 T4 T3 T4 T1 … 

core 1 

core 1 

core 2 

single-core system 

multicore system 

T
hr

ea
ds

 

L3-9 



10
 POSIX Pthreads 

!  Only a standard that defines an API for thread creation 
and management 

!  Native POSIX Thread Library (NPTL) is an 
implementation of the specification in most Linux 
systems 

T
hr

ea
ds

 

L3-10 



11
 Some Common Functions 

!  pthread_create : create a thread 
!  pthread_join : wait for a thread to finish 
!  pthread_cancel : terminate another thread 
!  pthread_yield : relinquish CPU 
!  pthread_exit : exit the thread (same as return) 

T
hr

ea
ds

 

L3-11 



12
 Example 

#include <pthread.h>
#include <stdio.h>

void *add_evens(void *data); 
void *add_odds(void *data);

/* argument to pass to threads */
typedef struct {

int *numbers;
int size;

} TD;

int main() {
int numbers[10] = {1,2,3,4,5,6,7,8,9,10};
long odd_sum, even_sum;

pthread_t tid1, tid2; /* thread identifiers */
TD r; 
r.numbers = numbers;
r.size = 10;

/* create thread */
pthread_create(&tid1, NULL, add_evens, &r);
pthread_create(&tid2, NULL, add_odds, &r); (continued on next slide) 

T
hr

ea
ds

 

L3-12 



13
 Example (Contd…) 

T
hr

ea
ds

 

/* wait for thread */
pthread_join(tid1, (void *)&even_sum);
pthread_join(tid2, (void *)&odd_sum);

printf("sum = %ld\n",even_sum+odd_sum);
}

void *add_odds(void *arg) {
int i;
long sum = 0;
TD *r = (TD *)arg;

for (i=1; i<r->size; i+=2) sum += r->numbers[i];
return (void *)sum;

}

void *add_evens(void *arg) {
int i;
long sum = 0;
TD *r = (TD *)arg;

for (i=0; i<r->size; i+=2) sum += r->numbers[i];
return (void *)sum;

}

L3-13 



14
 Implementing Threads in User Space 

!  When process A runs, code in one of 
the threads run 

!  When the running thread makes a 
thread-specific function call, run-time 
system gets control 

!  Run-time system can switch to another 
thread (fast because no system call) 
!  saves CPU state in thread table 

!  picks another ready thread for running  

!  loads CPU with the state of chosen thread 

T
hr

ea
ds

 

Process A Thread 

Thread run-time 
system Thread 

table 

Process
table 

Kernel 

User space 

Kernel space 

(a library that runs along 
with user program) 

These steps happen during the time the CPU is 
allocated to process A.  

What happens if process A is in blocked state? 
L3-14 



15
 Implementing Threads in Kernel Space 

!  When process A runs, code in one of 
the threads run 

!  When the running thread makes a 
system call, scheduler in the kernel gets 
control 

!  Scheduler can switch to another thread 
of same process, or to a different 
process 

T
hr

ea
ds

 

Process A Thread 

Thread 
table 

Process
table 

Kernel 

User space 

Kernel space 

L3-15 



16
 Scheduler Activations 

!  A scheme for communication between user-thread 
library and the kernel 
!  kernel provides virtual processors to run-time system 

!  virtual processors: kernel threads that the OS allocates the CPU to 

!  user-level threads are scheduled onto an available virtual 
processor by the run-time system 

!  a blocked thread on a virtual processor is wastage of 
allocated resources 

!  Scheduler activations provide upcalls 
!  a way of notifying the thread runtime system about interesting 

activities in the threads 
!  e.g. a thread has blocked/unblocked 

T
hr

ea
ds

 

L3-16 



17
 Threading Issues 

!  Need thread-wide global variables 
!  variables seen by any procedure in a thread, but not in 

another thread 

!  Many library procedures are not re-entrant 
!  when interrupted and then resumed, return value of 

procedure will be unreliable if another thread called the 
procedure in the meantime 

!  Signal handling 
!  signals are notifications from the kernel about interesting 

events (e.g. CTRL+C is pressed) 
!  process registers signal handler with OS 

!  Stack management 
!  how will the kernel manage thread stacks? 

T
hr

ea
ds

 

L3-17 



18
 References 

!  Chapter 2.2, Modern Operating Systems,  A. Tanenbaum 
and H. Bos, 4th Edition. 

T
hr

ea
ds

 

L3-18 


