
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

CPU Scheduling

1 Consider This Scenario

L4-1 C
PU

 S
ch

ed
ul

in
g

run factorial !% !
Enter number: ! 100 !

100! = 9.33e+157 !

% !

user waiting
CPU busy

•  OS loads the factorial program and switches control to it
•  OS does not get control back until the program finishes

2 Now This Scenario

L4-2 C
PU

 S
ch

ed
ul

in
g

run convert_video myhappybday.dat!% !

Which of the two programs will run?

run enumerate_chess!% !

convert_video enumerate_chess

state = READY state = READY

The Scheduler

decided by

scheduling algorithm

3 Process Behavior

L4-3 C
PU

 S
ch

ed
ul

in
g

long CPU burst

short CPU burst

waiting for I/O

CPU bound process

I/O bound process

4 Scheduler

!  Selects from among the processes in the ready state and
allocates the CPU to one of them

!  CPU scheduling decisions may take place when a
process
!  is created
!  terminates
!  switches from running to waiting state
!  an interrupt occurs (I/O complete, timer, etc.)

!  Operations performed to do process switching is pure
overhead

C
PU

 S
ch

ed
ul

in
g

L4-4

5 Scheduling Types

L4-5

!  Non-preemptive: Once a process starts running, it is
allowed to run until it blocks
!  after an interrupt is handled, CPU goes back to the process

running prior to the interrupt

!  Preemptive: A process may be forcibly removed from
the CPU
!  after interrupt is handled, CPU may not go back to the

process running prior to the interrupt

C
PU

 S
ch

ed
ul

in
g

6 Invoking the Scheduler

L4-6

!  Scenario:
!  user types command to start a program
!  the program starts running
!  user is unable to type anything on the console until program

finishes
!  Why?

!  We need to invoke the scheduler periodically
!  Timer interrupts can be used to hand over control to

the OS at regular intervals
!  configure timer hardware to generate an interrupt after fixed

interval
!  timer interrupt handler invokes scheduler

C
PU

 S
ch

ed
ul

in
g

7 Scheduling Algorithm Goals

L4-7

!  Any system
!  fairness, policy enforcement, balance

!  Batch systems
!  throughput, turnaround time, CPU utilization

!  Interactive systems
!  response time, proportionality

!  Real-time systems
!  meeting deadlines, predictability

C
PU

 S
ch

ed
ul

in
g

8 First-Come First-Served (FCFS)

L4-8 C
PU

 S
ch

ed
ul

in
g

A B C D E

READY queue RUNNING

scheduler dispatch
when A is out

process
terminates I/O processing

new
process

WAITING

PCB

9 First-Come First-Served (FCFS)

!  Ready queue: P1, P2, P3

!  Waiting time for P1 = 0; P2 = 24; P3 = 27
!  Average waiting time = (0+24+27)/3 = 17

Process Time on CPU

P1 24

P2 3

P3 3

P1 P2 P3

24 27 300

Gantt Chart

C
PU

 S
ch

ed
ul

in
g

L4-9

10 First-Come First-Served

!  If ready queue is P2, P3, P1

!  Waiting time for P1 = 6; P2 = 0; P3 = 3
!  Average waiting time = (6+0+3)/3 = 3

!  much better than the previous case
!  convoy effect is prevented

!  many I/O bound processes behind a CPU bound process

!  Preemptive or non-preemptive?

P1P3P2

63 300

C
PU

 S
ch

ed
ul

in
g

L4-10

11 Shortest Job First (SJF)

!  Associate with each process the length of its next CPU
burst

!  Use these lengths to first schedule the process with the
shortest time

!  SJF schedule gives the minimum average waiting time for
a given set of processes
!  the difficulty is knowing the length of the next CPU burst

C
PU

 S
ch

ed
ul

in
g

L4-11

12 SJF Example

!  SJF Gantt chart

!  Average waiting time: (3+16+9+0)/4 = 7

Process Burst Time

P1 6

P2 8

P3 7

P4 3

P4 P3P1

3 160 9

P2

24

C
PU

 S
ch

ed
ul

in
g

L4-12

13 Length of Next CPU Burst

!  Can only estimate the length

!  Can be done by using the length of previous CPU
bursts, using exponential averaging

€

- tn = actual length of nth CPU burst
- τ n+1 = predicted value for the next CPU burst
- α, 0 ≤α ≤1
- Define :

€

τ n+1 =α tn + 1−α()τ n

C
PU

 S
ch

ed
ul

in
g

L4-13

14 Example of Exponential Averaging

!  α = 0
!  τn+1 = τn ; recent history does not count

!  α = 1
!  τn+1 = tn ; only the actual last CPU burst counts

!  If we expand the formula, we get:
τn+1 = α tn + (1 - α)α tn-1 + …
 +(1 - α)j α tn-j + …
 +(1 - α)n+1 τ0

!  Since both α and (1 - α) are less than or equal to 1,
each successive term has less weight than its
predecessor

C
PU

 S
ch

ed
ul

in
g

L4-14

15 Shortest Remaining Time First

!  Preemptive shortest job first
!  always run the job that can finish the earliest

Process Arrival
Time

Burst
Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P1 P4P2

1 100 5

P1

2617

P3

average waiting time = ?

C
PU

 S
ch

ed
ul

in
g

L4-15

16 Round Robin (RR) Scheduling

!  Each process gets a small unit of CPU time (time
quantum)
!  usually 10-100 milliseconds

C
PU

 S
ch

ed
ul

in
g

L4-16

A B C D E

READY queue RUNNING

scheduler dispatch
when A is out

process
terminates

I/O processing

WAITING

new
process

timer interrupt

17 Round Robin (RR) Scheduling

!  Scheduler switches to next ready process in the queue
!  when the running process leaves the CPU voluntarily
!  when the timer hardware generates an interrupt

!  Performance
!  long quantum ⇒ FIFO, not good for interactive environments
!  short quantum ⇒ quantum must be large with respect to

context switch time, otherwise overhead is too high

C
PU

 S
ch

ed
ul

in
g

L4-17

18 RR Example

!  Higher average turnaround than SJF, but better response

Process Burst Time

P1 24

P2 3

P3 3

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

time quantum = 4

C
PU

 S
ch

ed
ul

in
g

L4-18

19 RR with CPU Shares

L4-19

!  Process P1, P2 and P3
!  Assume that P1 is guaranteed a 50% CPU share; the

remaining is divided between the rest

!  Round Robin schedules

C
PU

 S
ch

ed
ul

in
g

P1 P1 P2 P3 P1 P1 P2 P3 P1 ...

P1 P2 P1 P3 P1 P2 P1 P3 P1 ...

20 Priority Scheduling

!  A priority number (integer) is associated with each
process

!  The CPU is allocated to the process with the highest
priority
!  preemptive or non-preemptive?
!  SJF is a priority scheduler where priority is the predicted

next CPU burst time

!  Assign high priority to I/O bound processes - Why?

C
PU

 S
ch

ed
ul

in
g

L4-20

21 Priority Classes

REAL-TIME

HIGH

ABOVE NORMAL

NORMAL

BELOW NORMAL
lowest priority

C
PU

 S
ch

ed
ul

in
g

L4-21

READY queues

Round Robin Scheduling

Priority
Scheduling

highest priority

22 Multiple Queues

!  Three queues
!  Q0 : RR with time quantum 8 milliseconds
!  Q1 : RR with time quantum 16 milliseconds
!  Q2 : FCFS

Q0: time quantum = 8

Q1: time quantum = 16

Q2: FCFS

C
PU

 S
ch

ed
ul

in
g

L4-22

23 Scheduling Threads in User Space

L4-23 C
PU

 S
ch

ed
ul

in
g

Process A Process B

Thread run-time system Process
table

Kernel

User space

Kernel space

1.  Kernel scheduler picks process A to
run

2.  Scheduler in thread run-time system
decides the order in which process
A’s threads run in the time quantum

3.  Kernel scheduler picks process B to
run

4.  Scheduler in thread run-time system
decides the order in which process
B’s threads run in the time quantum

A1, A2, A3, A1, A2, A3, A1, A2, A3

A1, A2, A3, B1, B2, A1, A2, A3, B1

likely order:

unlikely order:

24 Scheduling Threads in Kernel Space

L4-24 C
PU

 S
ch

ed
ul

in
g

1.  Kernel scheduler picks a thread
from the thread table

2.  When the time quantum ends,
kernel scheduler picks another
thread from the thread table
•  may belong to same process, or

to a different one

A1, B2, B1, A1, B1, A3, A2, B2, A1

A1, A2, A3, B1, B2, A1, A2, A3, B1 likely order:

also possible:

Process A Process B

Thread
table

Process
table

Kernel

User space

Kernel space

25 References

!  Chapter 2.4, Modern Operating Systems, A. Tanenbaum
and H. Bos, 4th Edition.

T
hr

ea
ds

L3-25

