Main Memory

COMP 3361: Operating Systems I

Winter 2015
http:/ /www.cs.du.edu/3361

] Background

» A program must be brought (from disk) into memory
for it to run

» A typical instruction-execution cycle
fetch
decode (may result in more fetch operations)

execute

» We shall focus on the “fetch” part

generating memory addresses from where data/instruction is
to be read/written

L5-1

2 Memory Manager

» Keep track of occupied/available main memory
(RAM)
cache management done in hardware

register management done by compilers

» Allocate memory to processes when they need it

tell a process which part of free memory it should use

» Deallocate memory when a process is done using it

mark the memory areas as being available

L5-2

3 Two Programs

address instruction address instruction
16383 | NOP 16383 | NOP
28 | ADD .. 28 | CMP ..
24 | MOV .. 24 | CALL ..
0| JMP 28 0| JMP 24
Program A (16KB) Program B (16KB)

Both programs assume they will be placed at memory address zero

L5-3

4 Running a Program

after after
- physical { loadingA loading B
- memory - g —
16383 | NOP 16383 [NOP

28 | ADD .. 28 | CMP ..

24 | MOV .. 24 | CALL ..

0| JMP 28 0| JMP 24

Program A no longer

exists in memory!
L5-4

5 Critical Problems

32767 | NOP
1064959 | NOP
16412 | CMP ..
16408 | CALL .. 1048604 | ADD ...
1048600 | MOV ..
16384 | JMP 24 e
16383 | NOP 1048576 | JMP 28 ®—
28 | ADD ..
24 [MOV .. <~ \
0| JMP 28 This is not what

we wanted!

L5-5

6 Relocation Problem

» Instructions in both programs assume that the first
instruction is at memory address zero

» Relocation problem: If program is placed at a location
other than what was assumed, all address based
calculations fail

» Static relocation

before starting execution, modify all addresses in program by
adding the actual start address of the program

complicated since not all numbers are addresses

L5-6

: With Static Relocation

32767 | NOP
1064959 | NOP
16412 | CMP ..
16408 | CALL .. 1048604 | ADD ...
1048600 | MOV ..

16384 | JMP 24 —24 + 16384
16383 [NOP 1048576 L 28 + 1048576

28 | ADD ...

24 | MOV ..

0 JMP;.é _L28+0

L5-7

8 Process Address Space

» Static relocation works, but is complicated to do in
software

» Disconnect the link between addresses in program
instructions and physical memory

» Process address space: the set of addresses a process
can use

each process will have its own address space

address x in one process is different from address x in
another

addresses generated by a program will be called logical (virtual)
addresses

each program is created assuming

it is the only one running

and it will be placed at physical memory address zero
L5-8

9 Dynamic Relocation

» Address translation is done by a hardware component
called the memory management unit (MMU)

» MMU has two registers — Base and Limit

» When a program runs

load Base with the start address of program in physical
memory

load Limit with size of program

» When a program refers to a memory address m, MMU

checks if m is less than the value in Limit

adds Base to m to determine the actual physical address

L5-9

] 0 MMU with Base and Limit Registers

MMU

limit base
register register

logical physical
memory
IJMP 345 address address :
345 14345

general protection fault

L5-10

Relocation Today

Hidden portion of limit=1230 | base = 14000 GDTR ~,

segment register ' entry 0
entry |
entry 2
entry 3
entry 4

logical physical M1y
JMP 08:345 address address .
345 14345

|

in segment register
0000 0000 0000 1000

GDT entry |

L5-11

general protection fault

Main Memory

] 2 Memory Allocation

» Main memory is usually divided into two partitions:

resident operating system, usually held in low memory with
interrupt vector

user processes held in high memory

» How to keep track of free memory!?
quick allocation
quick de-allocation

» How to allocate memory areas!
contiguous

non-contiguous

L5-12

] 3 A DUMB Memory Manager

extern uint64_t total_memory;

uint32_t *xalloc_base; // the returned memory base address
uint32_t total_memory_bytes;

/*xk Initialize memory manager sxkx/
void init_memory_manager(void) {
total_memory_bytes = total_memory x 1024;

// allocated memory always begins at 4MB mark
alloc_base = (uint32_t x)(0x400000);
I3

/*x*k Allocate count bytes of memory xxkx/
void *alloc_memory(uint32_t count) {
int 1i;

// check if we have the requested memory
if ((uint32_t)alloc_base + count > total_memory_bytes)
return NULL;

return alloc_base;

L5-13

1 4 Tracking Memory Usage with

L5-14

Bitmaps

» Divide memory into allocation units or frames

memory will always be allocated in multiples of allocation

units

allocation unit (say 4KB)

rh

flflhhhh* Al

S

00000001

0: occupied | 00000001

1: available 11000000

00000111

D

uint8_t mem_bitmap[...];

mem__bitmap|[0]
mem_bitmap[1] =
mem_ bitmap[2]
mem__bitmap[3]

= 0xO0l

0xO01

= 0xCO0
= 0x07

1 5 Tracking Memory Usage with Lists

allocation unit (say 4KB)

=
I I I I I I | | | I I I I I I I I I I
L1 1 1 1 1 L1 1 1 1 1 1 1 1 1 1 1
0 8 16 24
m
typedef struct _m_area {
free =F free =T free =F bool free;
— start = @ «*> start = 7 > start = 8 |« uint32_t start;
size =17 size =1 size =4 uint3? t size:
struct _m_area *next;
struct _m_area *prev;
free =F free =T free =F } m_area;
> start = 12 [« start = 15 = start = 18 [«
size =3 size =3 size =11 m area *m;

L5-15

1 6 List Update

Before After
dealloc this area

free =F free =F free =F free =F free =T free =F

---{ start = 5 [«» start = 7 |«» start = 13 - ---- start = 5 «» start = 7 {[&» start = 13 -
size = 2 size =6 size =4 size = 2 size =6 size =4
free =F free =F free =T free =F free =T

---{ start = 5 «» start = 7 |[«» start = 13 F- -==- start = 5 [«» start =7 |--
size = 2 size =6 size =4 size = 2 size = 10
free =T free =F free =F free =T free =F

---{ start = 5 [«» start = 7 |«» start = 13 - ---=-| start = 5 [«&» start = 13 -
size =2 size =6 size =4 size =8 size =4
free =T free =F free =T free =T

---{ start = 5 «» start = 7 > start = 13 - ----| start = 5 |--
size =2 size =6 size =4 size = 12

L5-16

] : Implicit Free Lists

» Store free/used bit and area size in first four bytes of the
memory area

allocation unit (say 4KB)

e

A

[N O B
0

D

[N N N N O I
24

{00 {0070 00

byte 0 I 2 3 ... 4095 byte 0 I 2 3
0x00007000 0x3000 bytes
0x7000 bytes = 7x4KB {oo ool 10]o1] ... occupied
occupied (bit 0 = 0) byte O | 2 3 .. 4095
0x00001001
0x 1000 bytes = 1x4KB
free (bit 0 = I)

L5-17

] 8 What Next?

» Process A needs n frames of memory
» There are more than n frames of free memory

» All free areas are less than n frames in size!
» What to do!?

L5-18

] 9 References

» Chapter 3.1-3.2, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4" Edition.

L5-19

