Main Memory

COMP 3361: Operating Systems I

Winter 2015
http:/ /www.cs.du.edu/3361

] Logical (Virtual) Address Space

» One possible logical address space
begins at address zero and ends at (process size - |)
process here includes program code/data, stack, heap, etc.

the size of everything must be known in advance so that the
size of a process can be calculated

» Another possibility
begin at address zero and end at maximum possible address
with a 32 bit logical address space, that is 232-1 = OxFFFFFFFF

design a layout for the process in this space

there is ample room for parts to grow

Lé-1

2 32-bit Logical (Virtual) Address Space

OXFFFFFFFF

OXBFFFFFFF

process
T ___ address
_ o

Data (giobal variables)

Text (executable instructions)

Main Memory

L6-2

3 Scanario

» Process A needs n frames of memory
» There are more than n frames of free memory

» All free areas are less than n frames in size!
» What to do!?

Lé-3

4 Another Program

address instruction

16383 [NOP

40 | CMP ..
36 | ADD ..
32 | JMP 40
28 | ADD ..

0| JMP 28

Program C (16KB)

Lé6-4

Lé-5

1064959

1048616
1048612
1048608
1048604

1048576

Fragmented Process in Memory

NOP

CMP ..

ADD ..

JMP 40

ADD ..

JMP 28

2016347

2000004
2000000

1048608
1048604

1048576
base = 1048576

limit = 16383

NOP

CMP ..
ADD ..

ADD ..

JMP 28

incorrect!

Main Memory

Stitching Process Fragments

Data Data

Text Text

L6-6

: Paging

» Divide physical memory into fixed-size allocation units,
called frames

typically 4 KB; 2 MB,4 MB and | GB also possible

» Divide logical memory into pages of same size as a
frame

» Keep track of all free frames

» For a process of n pages, find n free frames and load
process in those frames

set up a page table to translate logical to physical addresses

Lé6-7

o

Lé6-8

48KB logical
address space

= Stack

Hean

1 Text

0

address range
in page

-

0xB000 to OxBFFF
0xA000 to OxAFFF
0x9000 to Ox9FFF
0x8000 to Ox8FFF
0x7000 to Ox7FFF
0x6000 to Ox6FFF

0x5000 to Ox5FFF
0x4000 to Ox4FFF

0x3000 to Ox3FFF
0x2000 to Ox2FFF

0x 1000 to Ox|FFF
0 to OxFFF

La page (say size = 4KB)

Pages and Frames

0x40C000 to 0x40CFFF
0x40B000 to 0x40BFFF
0x40A000 to Ox40AFFF
0x409000 to 0x409FFF
0x408000 to 0x408FFF
0x407000 to 0x407FFF
0x406000 to 0x406FFF
0x405000 to 0x405FFF
0x404000 to 0x404FFF
0x403000 to 0x403FFF
0x402000 to 0x402FFF
0x401000 to 0x40|FFF
0x400000 to 0x400FFF

LB

address range
in frame

32-bit address bus

(max 4GB RAM)

a frame (same size as page)

L6-9

logical address physical address

0x0000
0x5010
0x7000

0x402000
0x40CO010

0x0 (Wrong!) «—

page table
0 | 0x00402000
11 Stack 0xB000 to OxBFFF 1| 9x00403000
10 0xA000 to OxAFFF
) 0x9000 to Ox9FFF 2 RBxERURDNY
8 0x8000 to Ox8FFF 3 | 0x00405000
7 0x7000 to Ox7FFF 4 | 0x0040B000
6 0x6000 to Ox6FFF 5 | 0x0040C000
5 Hean 0x5000 to Ox5FFF
: Bm 0x4000 to Ox4FFF o (L
3 0x3000 to Ox3FFF 7 | 0x00000000
2 0x2000 to Ox2FFF 8 | 0x00000000
1 Text 0x 1000 to Ox|FFF 9 | 0x00000000
0 0 to OxFFF X
10 | 0x00407000
11 | 0x00408000

Page Table

0x40C000 to 0x40CFFF
0x40B000 to 0x40BFFF
0x40A000 to Ox40AFFF
0x409000 to 0x409FFF
0x408000 to 0x408FFF
0x407000 to 0x407FFF
0x406000 to 0x406FFF
0x405000 to 0x405FFF
0x404000 to 0x404FFF
0x403000 to 0x403FFF
0x402000 to 0x402FFF
0x401000 to 0x401FFF
0x400000 to 0x400FFF

need method to indicate
that mapping is not present!

SlIrINIW

1 O Present Bit

» Observe: if page/frame size is 4KB (0x 1000 bytes), then
start address of page/frame will always have lower 12
bits as zero

0x0, 0x1000, 0x2000, 0x3000, ...

» We can store additional information in those |2 bits

» When reading it as an address, we logically AND the
page table value with OxFFFFFO00

» Lets use bit 0 to signify if mapping is present or not
0: not present; |: present

Lé6-10

11

Page Table with Present Bit

page table
0 | 0x00402001 0x40C000 to 0x40CFFF 5
11 Xevdh 0xB000 to OxBFFF 1| 0x00403001
10 0xA000 to OXAFFF 0x40B000 to Ox40BFFF
2 05000 o O i e 0x40A000 to Ox40AFFF
8 0x8000 to Ox8FFF 3 | 0x00405001
6 0x6000 to Ox6FFF 5 | 0x0040C001 0x408000 to Ox408FFF
5 Hean 0x5000 to Ox5FFF
4 — 0x4000 to Ox4FFF 6 | 0x00000000 0x407000 to 0x407FFF
3 0x3000 to Ox3FFF 7 | 0x00000000 0x406000 to 0x406FFF
2 0x2000 to Ox2FFF
8 | 0x00000000
- —_ 01000 to Ox | FFF 0x405000 to Ox405FFF 3
0 0 to OXFFF 9 0x404000 to Ox404FFF 2
1
0 | 0x00407001 0x403000 to Ox403FFF 1
11 | 0x00408001
0x402000 to 0x402FFF /]
logical address physical address 0x401000 to 0x40 | FFF
0x0000 0x402000 0x400000 to 0x400FFF
0x5010 0x40C010
0x7000 no mapping

L6-11

] 2 Other Information in Page Table Entry

32 bit (4 byte) page table entry
31:12 11:9 8 7 6 5 4 3 2 1 0

frame number

global page?

A

A

page modified?

A

page accessed?

disable caching?

A

write-through caching?

' N

N

accessible by all?

A

write allowed?

A

page present!

set (1) if yes, otherwise clear (0)

Main Memory

Lé6-12

1 3 Dissecting a Logical Address

Page size = 4KB page table
32-bit logical address: O0x00001A21 0
1 | 0x12ABB107
f 2
Page table entry to look at: 0x00001A21 >> 12 = 0x1 3
4
Offset within frame: 0x00001A21 & 0x00000FFF = 0xA21
10242-1

Physical address: (0x12ABB107 & OxFFFFF000) + 0xA21 = 0x12ABBA21

global
accessible by all
write allowed
present

L6-13

] 4 Address Translation Scheme

» Logical address is divided into:
m-n bits n bits

page number (p): use as an index into a page table and get
base address of frame corresponding to page

page offset (d): add to base address to determine the
physical memory address

» For a given logical address space of 2™ and page size 2"
higher (m-n) bits is page number;lower n bits is page offset

L6-14

Main Memory

] 5 Paging in Hardware

logical physical
address address

Page Table Base
Register is loaded with
start physical address
of process page table

Y - PTBR

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

page table

Main Memory

L6-15

] 6 Making Lookups Faster

» Page table is kept in main memory
page-table base register (PTBR) points to the page table

» Every data/instruction access requires two memory
accesses
one for the page table and one for the data/instruction

» To make it faster; use a special fast-lookup hardware
cache called Translation Look-aside Buffer (TLB)

associative, high speed memory

L6-16

17

Associative Memory

Page

Frame

other configuration

» High speed parallel search

» Input: page number

» Lookup: parallel lookup of the associative array for the page

number

» Output: frame number

or a TLB miss: frame reference must be obtained from page table
and the TLB must be updated

» TLB flush/update necessary during process switch

Lé6-17

L6-18

Paging with TLB

logical
address
physical
Page Frame d d ress
> . a
> TLB Hit S
> P ®
> f:frame base
> d
> N*x\ f@ . @
f: frame base TTose
TLB Miss
=10 ~ PTBR

page table

-
-
-
-
-
-

physical memory

Main Memory

1 9 Large Page Tables

L6-19

» For a 32 bit logical address space and 4 KB page size,
there can be 1,048,576 pages

» Each page needs a page table entry

» Each entry is 4 bytes

» A page table needs 1048576 x 4 bytes = 4 MB of
memory

» That’s 4 MB for each process!

20

covers address
range OxFFC00000
to OxFFFFFFFF

L6-20

covers address
range 0x400000
to Ox7FFFFF

covers address

range O to
Ox3FFFFF

1048575

1047556
1047555
1047554
1047553
1047552

2047

1028
1027
1026
1025
1024
1023

[= N w oD -

... (4 bytes)

Paging the Page Table

1023

1023

page the page table

[= N w E Y .

1023

o = N w oD .

2 1 Two-Level Paging

page table 1023

1023

4
. address range 3
page directory oxFFC00000t0 |
OxFFFFFFFF
1023 | Ox0ABCDOO1 1 starts at physical address
0 0x0ABCDO000
4 | 0x00000000 page table |
3 | 6x00000000 He
2 | 0x00000000 4
address range
1 | 0x01235001 0x400000 to Ox7FFFFF
0 | 0x01234001 2
1 starts at physical address
0 0x01235000
address range
CR3 0 to Ox3FFFFF
page table 0

CRS3 register is loaded
with start physical
address of process
page directory

1023

starts at physical address
0x01234000

[= N w £ -

L6-21

2 2 Two-Level Paging (contd.)

» A logical address is broken down as follows:

where p, is the index into the page table pointed by the
page directory entry p,

32-bit logical address: QX00801A21

\QQGG 0000 1@100 0000 0001} \1@10 0010 0001}
| | |

get page table get frame start add this to frame
start address address from start address
from page table entry |

page directory
entry 2

L6-22

2 3 Page Directory Entry

32 bit (4 byte) page directory entry

31:12 11:6 54 3 2 10
000000

frame number where
page table is located

A

page table accessed?

A

disable caching?

write-through caching!?

' N

N

accessible by all?

A

write allowed?

A

page table present!?

set (1) if yes, otherwise clear (0)

Main Memory

L6-23

2 4 x86 Paging Modes

32-bit paging — Directory Table Offset
1 0-bit | 0-bit 12-bit (4KB page)
Directory Offset
— 10-bit 22-bit (4MB page)
PAE paging
= Directory Table Offset
Directory 2-bit 9-bit 9-bit 12-bit (4KB page)
Pointer
L Directory Offset
2-bit 9-bit 21-bit (2MB page)
IA-32e paging
PML4 Dir. Ptr. Directory Table Offset
9-bit 9-bit 9-bit 9-bit 12-bit (4KB page)
PML4 Dir. Ptr. Directory Offset
9-bit 9-bit 9-bit 21-bit (2MB page)
PML4 Dir. Ptr. Offset
9-bit 9-bit 30-bit (1GB page)

L6-24

2 5 Inverted Page Table

» One entry for each frame in memory

» Each entry consists of
the page stored in that frame

the process that owns that page

» Decreases memory needed to store each page table

only one page table in a system

» Increases time needed to search the table when a page
reference occurs

» Use hash table to limit the search to a few page table
entries

L6-25

2 6 Address Translation Full Chain

GDT PAGE TABLES

! !

Logical SEGMENTATION Linear PAGING Physical
Address UNIT Address UNIT Address

Note: Flat Segmentation (segments span entire address space) is typical these days

Main Memory

L6-26

2 : References

» Chapter 3.3, Modern Operating Systems, A.Tanenbaum
and H. Bos, 4" Edition.

L6-27

