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Virtual Machines 
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 Virtualization 

L7-1 

!  Create illusion of multiple machines on the same 
physical hardware 

!  Single computer hosts multiple virtual machines 
(computers) 

!  Virtualization software is also called hypervisors 

!  Each virtual machine is managed by a Virtual Machine 
Monitor (VMM)  

!  Host: the OS that runs the hypervisor, or the 
hypervisor itself 

!  Guest: the OS that runs in the virtual machine 
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 Why Virtualization? 
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!  Isolation: failure of one guest does not bring down the 
entire system 

!  Cost: fewer physical machines mean less money to 
maintain hardware, or pay for running costs (e.g. 
electricity) 

!  Migration: moving a system is equivalent to moving the 
memory and disk images (files) in software 

!  Legacy support: run legacy applications without the need 
for legacy hardware 

!  Software development: test software written for 
different operating systems in a single machine 

!  Class assignments! 
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 Requirements for Virtualization 
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!  Safety: hypervisor should have full control of virtualized 
resources 

!  Fidelity: behavior of a program on a virtual machine 
should be identical to same program running on bare 
hardware 

!  Efficiency: much of the code in a virtual machine 
should run without intervention by the hypervisor 
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 Trap-and-Emulate 
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 Instruction Types 
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!  Sensitive: instruction works differently in kernel mode 
and in user mode 
!  e.g. POPF, SGDT, SIDT, … 

!  Privileged: instruction that is only allowed in kernel 
mode 
!  e.g. CLI, MOV to CR3, … 
!  executing a privileged instruction in user mode will result in 

an exception 
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 Type 1 Hypervisors 
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Windows Linux Control Domain 

Type 1 Hypervisor 

Hardware 
(CPU, disk, network, interrupts, etc.) 

Windows process Linux process 
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 Type 2 Hypervisors 
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 Virtualizing Sensitive Instructions 

L7-8 V
ir

tu
al

 M
ac

hi
ne

 

Guest OS 

Type 1 Hypervisor 

Hardware 

ring 0 

ring 1 

ring 3 

user 
modes 

kernel
mode 

privileged instructions 
will trap to ring 0 

•  Privileged instruction in user modes 
•  from ring 1: emulate the instruction 
•  from ring 3: transfer to exception handler in guest OS  

What happens for sensitive operations performed in guest OS? 
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Full Virtualization With Binary Translation 
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!  Hardware will run sensitive instructions in guest OS 
processes as they should be since they are issued from 
ring 3 

!  Sensitive instructions executed in guest OS should be 
run as if they are issued in kernel mode 
!  ring 1 is not kernel mode: hardware will not do this by 

default 

!  Binary translation: sensitive instructions in kernel 
code are converted to calls into hypervisor code 
!  hypervisor code emulates the instruction as if it is executed 

in kernel mode 

!  Converted code fragments are cached  
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 Para-Virtualization 
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!  Guest OS is modified so that it makes a system call to 
the hypervisor when privileged operations are to be 
performed 
!  these calls are also called hypercalls 

!  Poor portability, but easier than full virtualization 
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 Hardware Assisted Virtualization 
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Guest OS 

Type 1 Hypervisor 

Hardware with Virtualization Support 

Technology:  Intel VT-X, AMD-V 

ring 0P 

ring 0D 

ring 3 

virtual kernel mode 

user mode 

program in guest OS 
tries to run sensitive or 

privileged instruction 

guest OS tries to run 
sensitive or privileged 

instruction 
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 Type 2 Hypervisors 
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!  Type 2 hypervisors run as user processes 

!  Must perform binary translation of all sensitive and 
privileged code that run in the hypervisor 

!  Or, install a module in ring 0 that takes care of loading 
virtual machines 
!  set up to run similar to full virtualization in type 1 

hypervisors 
!  ring 0 module must take care to “clean” the CPU state when 

other host OS processes are running 
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 Memory in Virtual Machines 
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 Memory Virtualization 
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!  Efficiency: the lesser we involve the hypervisor, the faster 
the code runs 

!  Consider that the guest page tables map page x to frame 
y, and we use these page tables directly in hardware for 
efficiency 

!  Could be problematic: 
!  frame y could be in use by the hypervisor or the host 
!  frame y could be in use by another guest 
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 Shadow Page Tables 
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!  Hypervisor maintains another set of page tables for 
each virtual machine 
!  shadow page tables: the actual mapping between pages and 

frames 

!  When guest OS tries to load page tables, it traps to the 
hypervisor 
!  loading page tables is a privileged operation 

!  Hypervisor makes MMU use the shadow page tables 
instead of the guest page tables 
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 Issue with Shadow Page Tables 
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!  Guest OS removes an existing mapping 
!  guest OS needs to invalidate the entry in the TLB 
!  invalidating TLB is a privileged operation 

!  hypervisor will know and update the shadow page table as well 

!  Guest OS remaps a page to a different frame 
!  TLB invalidation should be performed here too 

!  Guest OS maps a new page to a frame 
!  a simple update in memory that belongs to the guest OS 
!  no sensitive/privileged operation is necessary to do this 
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 Shadow Page Table Syncing 
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!  Solution 1: For the guest OS, hypervisor marks the 
pages containing the page directory/tables as read only 
in the shadow page table 
!  hardware will generate an exception when attempting to 

write to the page directory/tables 
!  exception will be handled by the hypervisor 

!  Solution 2: Delay syncing till problem occurs 
!  guest OS creates new entry in its page tables 
!  guest OS tries to access newly added page 
!  no mapping will be found by the hardware for the page 

!  since it is using the out-of-sync shadow page tables 

!  an exception will be generated 
!  hypervisor handles exception by syncing the page tables 
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 Hardware Based Memory Virtualization 
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!  Shadow page tables work by transferring control to the 
hypervisor via exceptions 
!  too expensive! 

!  Hardware support for memory virtualization 
!  AMD Nested Page Tables 
!  Intel Extended Page Tables 
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 Nested Page Tables 
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 I/O Virtualization 
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!  I/O operations are sensitive 
!  hypervisor gets control when they are performed by guest 

OS and handles it 

!  Disk I/O: can read/write to a file instead of an actual 
disk 

!  Interrupts: hypervisor receives actual interrupts and 
propogates them to guest OS by calling the guest 
handler 

!  DMA transfers: hypervisor loads IOMMU with mappings 
such that data is transferred to frames dedicated to 
guest OS 

!  Hardware support: separate buffers, registers, queues, 
etc. for virtual machines 

V
ir

tu
al

 M
ac

hi
ne

 



21
 References 

!  Chapter 7.1-7.7, Modern Operating Systems,  A. 
Tanenbaum and H. Bos, 4th Edition. 

L7-21 V
ir

tu
al

 M
ac

hi
ne

 


