
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

Virtual Machines

1
 Virtualization

L7-1

!  Create illusion of multiple machines on the same
physical hardware

!  Single computer hosts multiple virtual machines
(computers)

!  Virtualization software is also called hypervisors

!  Each virtual machine is managed by a Virtual Machine
Monitor (VMM)

!  Host: the OS that runs the hypervisor, or the
hypervisor itself

!  Guest: the OS that runs in the virtual machine

V
ir

tu
al

 M
ac

hi
ne

2
 Why Virtualization?

L7-2

!  Isolation: failure of one guest does not bring down the
entire system

!  Cost: fewer physical machines mean less money to
maintain hardware, or pay for running costs (e.g.
electricity)

!  Migration: moving a system is equivalent to moving the
memory and disk images (files) in software

!  Legacy support: run legacy applications without the need
for legacy hardware

!  Software development: test software written for
different operating systems in a single machine

!  Class assignments!

V
ir

tu
al

 M
ac

hi
ne

3
 Requirements for Virtualization

L7-3

!  Safety: hypervisor should have full control of virtualized
resources

!  Fidelity: behavior of a program on a virtual machine
should be identical to same program running on bare
hardware

!  Efficiency: much of the code in a virtual machine
should run without intervention by the hypervisor

V
ir

tu
al

 M
ac

hi
ne

4
 Trap-and-Emulate

L7-4 V
ir

tu
al

 M
ac

hi
ne

`

Hypervisor

Guest processes

Guest OS

Virtualized Hardware

Virtual machine 1 Virtual machine 2 Virtual machine 3

Guest processes

Guest OS

Virtualized Hardware

Guest processes

Guest OS

Virtualized Hardware

Hardware

.

.

run regular
operations
directly on
hardware

catch (trap)
operations
that try to
change
hardware

emulate caught
operations

5
 Instruction Types

L7-5

!  Sensitive: instruction works differently in kernel mode
and in user mode
!  e.g. POPF, SGDT, SIDT, …

!  Privileged: instruction that is only allowed in kernel
mode
!  e.g. CLI, MOV to CR3, …
!  executing a privileged instruction in user mode will result in

an exception

V
ir

tu
al

 M
ac

hi
ne

6
 Type 1 Hypervisors

L7-6 V
ir

tu
al

 M
ac

hi
ne

Windows Linux Control Domain

Type 1 Hypervisor

Hardware
(CPU, disk, network, interrupts, etc.)

Windows process Linux process

7
 Type 2 Hypervisors

L7-7 V
ir

tu
al

 M
ac

hi
ne

Windows Linux

OSX

Hardware
(CPU, disk, network, interrupts, etc.)

Windows process Linux process

Guest OS
OSX process

Type 2 Hypervisor

Host OS

8
 Virtualizing Sensitive Instructions

L7-8 V
ir

tu
al

 M
ac

hi
ne

Guest OS

Type 1 Hypervisor

Hardware

ring 0

ring 1

ring 3

user
modes

kernel
mode

privileged instructions
will trap to ring 0

•  Privileged instruction in user modes
•  from ring 1: emulate the instruction
•  from ring 3: transfer to exception handler in guest OS

What happens for sensitive operations performed in guest OS?

9
Full Virtualization With Binary Translation

L7-9

!  Hardware will run sensitive instructions in guest OS
processes as they should be since they are issued from
ring 3

!  Sensitive instructions executed in guest OS should be
run as if they are issued in kernel mode
!  ring 1 is not kernel mode: hardware will not do this by

default

!  Binary translation: sensitive instructions in kernel
code are converted to calls into hypervisor code
!  hypervisor code emulates the instruction as if it is executed

in kernel mode

!  Converted code fragments are cached

V
ir

tu
al

 M
ac

hi
ne

10
 Para-Virtualization

L7-10

!  Guest OS is modified so that it makes a system call to
the hypervisor when privileged operations are to be
performed
!  these calls are also called hypercalls

!  Poor portability, but easier than full virtualization

V
ir

tu
al

 M
ac

hi
ne

11
 Hardware Assisted Virtualization

L7-11 V
ir

tu
al

 M
ac

hi
ne

Guest OS

Type 1 Hypervisor

Hardware with Virtualization Support

Technology: Intel VT-X, AMD-V

ring 0P

ring 0D

ring 3

virtual kernel mode

user mode

program in guest OS
tries to run sensitive or

privileged instruction

guest OS tries to run
sensitive or privileged

instruction

12
 Type 2 Hypervisors

L7-12

!  Type 2 hypervisors run as user processes

!  Must perform binary translation of all sensitive and
privileged code that run in the hypervisor

!  Or, install a module in ring 0 that takes care of loading
virtual machines
!  set up to run similar to full virtualization in type 1

hypervisors
!  ring 0 module must take care to “clean” the CPU state when

other host OS processes are running

V
ir

tu
al

 M
ac

hi
ne

13
 Memory in Virtual Machines

L7-13 V
ir

tu
al

 M
ac

hi
ne

Pages

0 4GB

Virtual
Address Space

Virtual RAM

0 2GB
Physical

Address Space

Physical RAM

0 8GB
Machine

Address Space

virtual machine with 2GB RAM

physical machine with 8GB RAM

14
 Memory Virtualization

L7-14

!  Efficiency: the lesser we involve the hypervisor, the faster
the code runs

!  Consider that the guest page tables map page x to frame
y, and we use these page tables directly in hardware for
efficiency

!  Could be problematic:
!  frame y could be in use by the hypervisor or the host
!  frame y could be in use by another guest

V
ir

tu
al

 M
ac

hi
ne

15
 Shadow Page Tables

L7-15

!  Hypervisor maintains another set of page tables for
each virtual machine
!  shadow page tables: the actual mapping between pages and

frames

!  When guest OS tries to load page tables, it traps to the
hypervisor
!  loading page tables is a privileged operation

!  Hypervisor makes MMU use the shadow page tables
instead of the guest page tables

V
ir

tu
al

 M
ac

hi
ne

16
 Issue with Shadow Page Tables

L7-16

!  Guest OS removes an existing mapping
!  guest OS needs to invalidate the entry in the TLB
!  invalidating TLB is a privileged operation

!  hypervisor will know and update the shadow page table as well

!  Guest OS remaps a page to a different frame
!  TLB invalidation should be performed here too

!  Guest OS maps a new page to a frame
!  a simple update in memory that belongs to the guest OS
!  no sensitive/privileged operation is necessary to do this

V
ir

tu
al

 M
ac

hi
ne

17
 Shadow Page Table Syncing

L7-17

!  Solution 1: For the guest OS, hypervisor marks the
pages containing the page directory/tables as read only
in the shadow page table
!  hardware will generate an exception when attempting to

write to the page directory/tables
!  exception will be handled by the hypervisor

!  Solution 2: Delay syncing till problem occurs
!  guest OS creates new entry in its page tables
!  guest OS tries to access newly added page
!  no mapping will be found by the hardware for the page

!  since it is using the out-of-sync shadow page tables

!  an exception will be generated
!  hypervisor handles exception by syncing the page tables

V
ir

tu
al

 M
ac

hi
ne

18
 Hardware Based Memory Virtualization

L7-18

!  Shadow page tables work by transferring control to the
hypervisor via exceptions
!  too expensive!

!  Hardware support for memory virtualization
!  AMD Nested Page Tables
!  Intel Extended Page Tables

V
ir

tu
al

 M
ac

hi
ne

19
 Nested Page Tables

L7-19 V
ir

tu
al

 M
ac

hi
ne

Guest Page Table Nested Page Table
guest
virtual
address

guest
physical
address

machine
physical
address

no
mapping

no
mapping

exception forwarded to
guest OS

exception forwarded to
hypervisor

MMU hardware

20
 I/O Virtualization

L7-20

!  I/O operations are sensitive
!  hypervisor gets control when they are performed by guest

OS and handles it

!  Disk I/O: can read/write to a file instead of an actual
disk

!  Interrupts: hypervisor receives actual interrupts and
propogates them to guest OS by calling the guest
handler

!  DMA transfers: hypervisor loads IOMMU with mappings
such that data is transferred to frames dedicated to
guest OS

!  Hardware support: separate buffers, registers, queues,
etc. for virtual machines

V
ir

tu
al

 M
ac

hi
ne

21
 References

!  Chapter 7.1-7.7, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4th Edition.

L7-21 V
ir

tu
al

 M
ac

hi
ne

