
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

OS Security

1
 The Security Problem

!  Computers consist of a collection of objects, hardware
or software

!  Each object has a unique name and can be accessed
through a well-defined set of operations

!  Security problem: ensure that each object is accessed
correctly and only by those processes that are allowed
to do so
!  system is secure if resources used and accessed as intended

under all circumstances

L8-1 Se
cu

ri
ty

2
 Terms

!  An intruder (cracker) attempts to breach security
!  A threat is a potential security violation, arising from

the existence of some vulnerability in the system
!  An attack is an attempt to breach security, typically by

exploiting a vulnerability
!  For a system to be secure, preserve

!  confidentiality: release of data to unauthorized users never
occurs

!  integrity: unauthorized users should not be able to modify
any data

!  availability: the system should be serving the purpose it was
designed for

L8-2 Se
cu

ri
ty

3
 Protection Domains

!  Access-right = <object-name, rights-set>
!  rights-set is a subset of all valid operations that can be

performed on the object

!  A domain is a set of access-rights
!  rights assigned based of principle of least privilege

!  Every process runs in some protection domain
L8-3 Se

cu
ri

ty

File1[r] !
File2[rw] !

File1[rw] !
File4[rwx] !
File5[rw] !

File6[rwx] !
Plotter2[w] !Printer1[w] !

Domain 1 Domain 2 Domain 3

4
 Domain Implementation (UNIX)

!  Domain = user-id
!  Domain switch accomplished via file system

!  each file has associated with it a domain bit (setuid bit)
!  when file is executed and setuid = on, then user-id is set to

owner of the file being executed
!  when execution completes user-id is reset

!  Domain switch accomplished via passwords
!  su command temporarily switches to another user’s domain

when other domain’s password is provided

!  Domain switching via commands
!  sudo command prefix executes specified command in

another domain (if original domain has privilege or password
given)

L8-4 Se
cu

ri
ty

5
 Protection Matrix

!  Rows represent domains
!  Columns represent objects

!  If a process in Domain Di tries to do “op” on object Oj,
then “op” must be in cell (i,j)

L8-5 Se
cu

ri
ty

File1 File2 File3 File4 File5 File6 Printer1 Plotter2

D1 R RW

D2 R RWX RW W

D3 RWX W W

6
 Domain Switching in Matrix

!  Domains are also objects, with the enter operation

!  D1 can switch to D2, but not D3.

L8-6 Se
cu

ri
ty

File1 File2 File3 File4 File5 File6 Printer1 Plotter2 D1 D2 D3

D1 R RW Enter

D2 R RWX RW W Enter

D3 RWX W W

7
 Access Control List Implementation

!  Access control list (ACL) for objects
!  each column implemented as an access list for one object
!  resulting per-object list consists of ordered pairs <domain,

rights-set> defining all domains with non-empty set of access
rights for the object

L8-7 Se
cu

ri
ty

F1 jack: rw; mary: r !

F2 jack: r; mary: rw; ryan: r !

F3 mary: rwx; ryan: rx!

Files

process
owned by

jack

process
owned by

ryan

ACL

kernel space

user space

process
owned by

jack

8
 Capability List Implementation

!  Capability list (C-list) for domains
!  each process has a capability list
!  capability list for a process is list of objects together with

operations allowed on them

L8-8 Se
cu

ri
ty

F1 F1: rw !
F2: r !

F2

F3

F2: r !
F3: rx !

process
owned by

jack

process
owned by

ryan

C-list

kernel space

user space

process
owned by

jack

F1: rw !
F2: r !

9
 Comparison of Implementations

!  Rights check for an operation
!  ACL: check through long list of (domain,rights)
!  C-list: only check capability list of process

!  Revocation: remove a right for an object
!  ACL: search access list of object and remove entries

corresponding to the right
!  can be selective, e.g. “remove write access in file x for domain y”

!  C-List: search all C-lists for object with the particular right,
and then remove
!  selective removal is difficult

L8-9 Se
cu

ri
ty

10
 Cryptography as a Security Tool

!  Means to constrain potential senders (sources) and/or
receivers (destinations) of messages
!  based on secrets (keys)
!  enables

!  receipt only by certain destination
!  confirmation of source

L8-10 Se
cu

ri
ty

11
 Cryptographic Hash

L8-11 Se
cu

ri
ty

Hashing
algorithm

plaintext
message m

(a bitstream)

key
(may not be necessary in some algorithms)

digest
fixed-size

alphanumeric
string

for message fingerprinting

Obtaining the message from the digest is not possible even after knowing
the algorithm and the key

12
 Usage Example: Password Storage

L8-12 Se
cu

ri
ty

Hashing
algorithm

password “abcdef”
password

digest
0x1A2B3C…

jack: 0x1A2B3C…
…
…
…
…
…

password file

(attacker can pre-compute digest for possible passwords and then compare)

Hashing
algorithm

password “abcdef”
+

12-bit salt “0x456”

digest
0x9F8E7D…

jack: 0x456: 0x9F8E7D
…
…
…
…
…

password file

(212 more pre-computations necessary)

13
 Secret-Key (Symmetric) Encryption

L8-13 Se
cu

ri
ty

Encryption
algorithm

plaintext
message m

(a bitstream)

secret key
k

Decryption
algorithm

secret key
k

ciphertext
garbled

bitstream
m

sender receiver

attacker knows the algorithms and can see ciphertext;
obtaining the secret key from the ciphertext is computationally infeasible

constrain who sends and who receives

14
 Usage Example: Encrypting Files

L8-14 Se
cu

ri
ty

Key
Derivation
Algorithm

password “abcdef”
+

12-bit salt “0x456”

Encryption
algorithm

Decryption
algorithm

secret key

secret key S
(system generated)

Encryption
algorithm

Decryption
algorithm

encrypted S
(stored on disk) S

encrypted file on disk

15
 Asymmetric Encryption

L8-15 Se
cu

ri
ty

Encryption
algorithm

plaintext
message m

(a bitstream)

public key of receiver

Decryption
algorithm

private key of receiver

ciphertext
m

sender receiver

attacker knows the algorithms, public key, and can see ciphertext;
obtaining the private key from the ciphertext and the public key is
computationally infeasible

constrain who receives

16
 Usage Example: Recoverable Enc. Files

L8-16 Se
cu

ri
ty

Key
Derivation
Algorithm

password “abcdef”
+

12-bit salt “0x456”

Encryption
algorithm

Decryption
algorithm

secret key

secret key S
(system generated)

Encryption
algorithm

Decryption
algorithm

encrypted S
(stored on disk) S

encrypted file on disk

Encryption
algorithm

public key of recovery agent

encrypted S
(stored on disk and can be

decrypted with private key of
recovery agent)

17
 Digital Signature

L8-17 Se
cu

ri
ty

Encryption
algorithm

digest of
message m

private key of sender

Decryption
algorithm

public key of sender

ciphertext

sender receiver

message m is not tampered with during transit if d = d’;
if d = d’, then sender is also authenticated

establish authenticity of sender

message m message m
(compute

d’=digest of m)

d

+ +

18
 Key Distribution

!  Delivery of symmetric keys is a huge challenge
!  sometimes done out-of-band

!  Asymmetric keys can proliferate
!  public keys are no secret
!  even asymmetric key distribution needs care

!  man-in-the-middle attack

L8-18 Se
cu

ri
ty

19
 Digital Certificates

!  Proof of who or what owns a public key
!  Trusted party receives proof of identification from user

and certifies that public key belongs to the user
!  public key digitally signed by trusted party

!  user’s public key encrypted (signed) with trusted party’s private key
!  also known as a digital certificate

!  how to know signature is legitimate?

!  Certificate authorities are trusted parties – their public
keys are included with web browser distributions
!  they vouch for other authorities via digitally signing their

keys, and so on

L8-19 Se
cu

ri
ty

20
 Buffer-Overflow Condition

#include <stdio.h>

int main(int argc, char *argv[]) {

printf(“Begin logging…\n”);

insert_log();

printf(“End logging…\n”);

}

void insert_log() {

char B[128];

printf(“Enter log message:”);

gets(B);

writeLog(B);

}

L8-20 Se
cu

ri
ty

21
 Layout of Stack

L8-21 Se
cu

ri
ty

return address
(address of the printf call after insert_log)

address of stack top before
function entry

space for B[127]

…

space for B[0]

pushed by the CALL
instruction

stack layout when insert_log begins

done by hidden instructions
in the beginning of insert_log

22

return address
(address of the printf call after insert_log)

address of stack top before
function entry

space for B[127]

…

space for B[0]

user input to gets

Buffer-Overflow

L8-22 Se
cu

ri
ty

return address
(address of the printf call after insert_log)

address of stack top before
function entry

space for B[127]

…

space for B[0]

user types
more than
128 bytes

parts of user input
overwrites return

address

23
 Stack Layout After gets()

L8-23 Se
cu

ri
ty

new return address
(address where shell code starts)

NOP
NOP

…
NOP

shell code
(code that launches a terminal)

will not work if stack is set up to be data-only (non-executable)

attacker
inserts

24

0x0000000A

return address

address of stack top before
function entry

space for R

…

space for B[0]

Stack Layout with Function Arguments

L8-24 Se
cu

ri
ty

pushed by the CALL
instruction

pushed by compiler
generated code

long foo(int N) {
long R;
char B[128];
…
gets(B);
…

}

foo(0xA);

25

0x0000000A

return address

address of stack top before
function entry

space for R

…

space for B[0]

Code Reuse Attack

L8-25 Se
cu

ri
ty

overwritten return address
(address of system function in libc)

modified address of stack top
before function entry

NOP
…

NOP

rm –rf / 0 !

a fake address

attacker
inserts

rm –rf / 0 !

a fake address!

stack as seen by the system
function (exactly as it would
look like if someone CALLed

the function)

after returning from foo,
stack is restored (but, stack
pointer points to modified
stack top) and we end up in
the beginning of the
system function in libc

system(“rm –rf /”) means delete ALL files!

26
 References

L8-26

!  Chapter 9.1, 9.2, 9.3, 9.5, 9.7.1, Modern Operating
Systems, A. Tanenbaum and H. Bos, 4th Edition.

Se
cu

ri
ty

