Process Synchronization

COMP 3361: Operating Systems I

Winter 2015
http:/ /www.cs.du.edu/3361

] Shared Memory

» Two or more processes (or threads) need access to the
same data

» Threads
by design, they share data

» Processes

by design, each process has its own address space (therefore
separate data section)

how can they share data!?

L9-1

Shared Memory in Processes

Process A’s Page Table Process B’s Page Table
0 | 0x00402001 0 | 0x00823001
1 | 0x00403001 1 | 0x00824001
2 | 0x00404001 logical address 2 | 0x00825001

Physical Memory

—

a frame

L9-2

3 Why Synchronization?

» Concurrent access to shared data may result in data
inconsistency

imagine two processes writing to the same array at the same
time

» Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

L9-3

4 Producer-Consumer Problem

» A producer process produces information that is
consumed by a consumer process

» If producer has access to an unlimited amount of
storage (unbounded buffer), it can keep producing

do not have to worry if consumer is consuming the
information or not

» The consumer may have to wait for new items to be
produced

» What happens when the storage is limited (bounded
buffer)?
producer also may have to wait until some items are
consumed

L9-4

A Shared Memory Solution

» Shared data

next free position first full position
#define BUFFER_SIZE 8 E §
typedef struct {
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0; “
buffer
buffer is empty when in == out

buffer is full when ((in+1)%$BUFFER _SIZE) == out

L9-5

6 Producer

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing -- no free buffers */
buffer[in] = item;

in = (in + 1) % BUFFER _SIZE;

in producer waits in
this case

L9-6

7 Consumer

while (true) {
while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer
item = buffer[out];

out = (out + 1) % BUFFER SIZE;

empty buffer
consumer must wait

L9-7

8 Producer-Consumer Revisited

buffer is full since
out (in+l) % BUFFER SIZE == out

To use all available space in the buffer:

e use a count variable to track the
number of occupied slots
* initialize count=0

* producer increments count

e consumer decrements count

L9-8

9 Producer

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)

0 /* do nothing -- no free buffers */

Before

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

while (true) {
/* Produce an item */
while (count == BUFFER_SIZE)

; /* do nothing -- no free buffers */

After

buffer [in] = item;
in = (in + 1) % BUFFER SIZE;

count++;

L9-9

1 O Consumer

while (true) {

while (in == out)
o ; // do nothing -- nothing to consume
‘g // remove an item from the buffer
o item = buffer[out];
out = (out + 1) 3% BUFFER SIZE;
}
while (true) {
while (count == 0)
C ; /* do nothing -- nothing to consume */
23 item = buffer [out];

out = (out + 1) % BUFFER_SIZE;

count--;

L9-10

1] Data Inconsistency Example

» count++ could be implemented as

register| = count
register| = register| + |
count = register |

» count-- could be implemented as

register2 = count
register2 = register? - |
count = register?

L9-11

12

L9-12

» Say count =5

Data Inconsistency Example

» Say producer produces an item and consumer consumes

one

count should still be 5 at the end of it

» Assume the following interleaving of instructions:

TO: producer executes register| = count {register| = 5}

T1: producer executes register| = register| + | {register| = 6}
T2: consumer executes register2 = count {register2 = 5}

T3: consumer executes register2 = register2 - | {register2 = 4}
T4: producer executes count = register| {count =6 }

T5: consumer executes count = register2 {count = 4}

» We arrive at an incorrect value for count

the value may be different for a different execution order

] 3 Race Condition

» An incorrect state for count was achieved because
both processes were allowed to manipulate it
concurrently

» Race condition

several processes access and manipulate the same data
concurrently

outcome of the execution depends on the particular order of
access

» Process synchronization is all about the prevention of
race conditions

L9-13

] 4 Critical Section

» Segment of code in which a process may be changing
shared data

common variables, tables, files, etc.

» Two processes should not be executing in their critical
sections at the same time

one (or more) of the processes must be made to wait
also called having mutual exclusion

L9-14

1 5 A Good Solution

» No two processes may be simultaneously inside their
critical regions

» No assumptions may be made about speeds or the
number of CPUs

» No process running outside its critical region may block
other processes

» No process should have to wait forever to enter its
critical region

L9-15

1 6 References

» Chapter 2.3 and 2.5, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4" Edition.

L9-16

