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] Shared Memory

» Two or more processes (or threads) need access to the
same data

» Threads
by design, they share data

» Processes

by design, each process has its own address space (therefore
separate data section)

how can they share data!?
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Shared Memory in Processes

Process A’s Page Table Process B’s Page Table
0 | 0x00402001 0 | 0x00823001
1 | 0x00403001 1 | 0x00824001
2 | 0x00404001 logical address 2 | 0x00825001

Physical Memory

—

a frame
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3 Why Synchronization?

» Concurrent access to shared data may result in data
inconsistency

imagine two processes writing to the same array at the same
time

» Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

L9-3




4 Producer-Consumer Problem

» A producer process produces information that is
consumed by a consumer process

» If producer has access to an unlimited amount of
storage (unbounded buffer), it can keep producing

do not have to worry if consumer is consuming the
information or not

» The consumer may have to wait for new items to be
produced

» What happens when the storage is limited (bounded
buffer)?
producer also may have to wait until some items are
consumed
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A Shared Memory Solution

» Shared data

next free position first full position
#define BUFFER_SIZE 8 E §
typedef struct {
} item;
item buffer[ BUFFER_SIZE];
int in = 0;
int out = 0; “
buffer
buffer is empty when in == out

buffer is full when ((in+1)%$BUFFER _SIZE) == out
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6 Producer

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing -- no free buffers */
buffer[in] = item;

in = (in + 1) % BUFFER _SIZE;

in producer waits in
this case
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7 Consumer

while (true) {
while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer
item = buffer[out];

out = (out + 1) % BUFFER SIZE;

empty buffer
consumer must wait
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8 Producer-Consumer Revisited

buffer is full since
out (in+l) % BUFFER SIZE == out

To use all available space in the buffer:

e use a count variable to track the
number of occupied slots
* initialize count=0

* producer increments count

e consumer decrements count
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9 Producer

while (true) {
/* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)

0 /* do nothing -- no free buffers */

Before

buffer[in] = item;

in = (in + 1) % BUFFER SIZE;

while (true) {
/* Produce an item */
while (count == BUFFER_SIZE)

; /* do nothing -- no free buffers */

After

buffer [in] = item;
in = (in + 1) % BUFFER SIZE;

count++;
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1 O Consumer

while (true) {

while (in == out)
o ; // do nothing -- nothing to consume
‘g // remove an item from the buffer
o item = buffer[out];
out = (out + 1) 3% BUFFER SIZE;
}
while (true) {
while (count == 0)
C ; /* do nothing -- nothing to consume */
23 item = buffer [out];

out = (out + 1) % BUFFER_SIZE;

count--;
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1 ] Data Inconsistency Example

» count++ could be implemented as

register| = count
register| = register| + |
count = register |

» count-- could be implemented as

register2 = count
register2 = register? - |
count = register?
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12
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» Say count =5

Data Inconsistency Example

» Say producer produces an item and consumer consumes

one

count should still be 5 at the end of it

» Assume the following interleaving of instructions:

TO: producer executes register| = count {register| = 5}

T1: producer executes register| = register| + | {register| = 6}
T2: consumer executes register2 = count {register2 = 5}

T3: consumer executes register2 = register2 - | {register2 = 4}
T4: producer executes count = register| {count =6 }

T5: consumer executes count = register2 {count = 4}

» We arrive at an incorrect value for count

the value may be different for a different execution order




] 3 Race Condition

» An incorrect state for count was achieved because
both processes were allowed to manipulate it
concurrently

» Race condition

several processes access and manipulate the same data
concurrently

outcome of the execution depends on the particular order of
access

» Process synchronization is all about the prevention of
race conditions
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] 4 Critical Section

» Segment of code in which a process may be changing
shared data

common variables, tables, files, etc.

» Two processes should not be executing in their critical
sections at the same time

one (or more) of the processes must be made to wait
also called having mutual exclusion
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1 5 A Good Solution

» No two processes may be simultaneously inside their
critical regions

» No assumptions may be made about speeds or the
number of CPUs

» No process running outside its critical region may block
other processes

» No process should have to wait forever to enter its
critical region
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