
COMP 3361: Operating Systems I
Winter 2015

http://www.cs.du.edu/3361

Process Synchronization

1 Shared Memory

!  Two or more processes (or threads) need access to the
same data

!  Threads
!  by design, they share data

!  Processes
!  by design, each process has its own address space (therefore

separate data section)
!  how can they share data?

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-1

2 Shared Memory in Processes

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

0 ! 0x00402001 !
1 ! 0x00403001 !
2 ! 0x00404001 !
3 ! 0x00405001 !
. ! . . . !

Process A’s Page Table

0 ! 0x00823001 !
1 ! 0x00824001 !
2 ! 0x00825001 !
3 ! 0x00405001 !
. ! . . . !

Process B’s Page Table

Physical Memory

logical address
0x3000 to 0x3FFF

a frame

L9-2

3 Why Synchronization?

!  Concurrent access to shared data may result in data
inconsistency
!  imagine two processes writing to the same array at the same

time

!  Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-3

4 Producer-Consumer Problem

!  A producer process produces information that is
consumed by a consumer process

!  If producer has access to an unlimited amount of
storage (unbounded buffer), it can keep producing
!  do not have to worry if consumer is consuming the

information or not

!  The consumer may have to wait for new items to be
produced

!  What happens when the storage is limited (bounded
buffer)?
!  producer also may have to wait until some items are

consumed

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-4

5
!  Shared data

#define BUFFER_SIZE 8
typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];
int in = 0;

int out = 0;

A Shared Memory Solution

0

1

2

3
4

5

6

7

in

buffer

next free position first full position

 buffer is empty when in == out
 buffer is full when ((in+1)%BUFFER_SIZE) == out

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-5

6 Producer

while (true) {  
 /* Produce an item */

 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER_SIZE;

 }

0

1

2

3
4

5

6

7

out

in

0

1

2

3
4

5

6

7

out

in

0

1

2

3
4

5

6

7

out

in

producer waits in
this case

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-6

7 Consumer

while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 }

0

1

2

3
4

5

6

7

out

in

0

1

2

3
4

5

6

7

out

in

0

1

2

3
4

5

6

7

out

in

empty buffer
consumer must wait

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-7

8 Producer-Consumer Revisited

0

1

2

3
4

5

6

7

out

in

buffer is full since
(in+1) % BUFFER_SIZE == out

To use all available space in the buffer:

•  use a count variable to track the
 number of occupied slots

•  initialize count = 0

•  producer increments count

•  consumer decrements count

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-8

9
while (true) {  
 /* Produce an item */

 while (((in + 1) % BUFFER_SIZE) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER_SIZE;

 }

Producer

while (true) {

/* Produce an item */

 while (count == BUFFER_SIZE)

 ; /* do nothing -- no free buffers */

 buffer [in] = item;

 in = (in + 1) % BUFFER_SIZE;

 count++;

 }

Be
fo

re

A
fte

r

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-9

10 Consumer

while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 }

while (true) {

 while (count == 0)

 ; /* do nothing -- nothing to consume */

 item = buffer [out];

 out = (out + 1) % BUFFER_SIZE;

 count--;

 }

Be
fo

re

A
fte

r

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-10

11 Data Inconsistency Example

!  count++ could be implemented as

 register1 = count
 register1 = register1 + 1
 count = register1

!  count-- could be implemented as

 register2 = count
 register2 = register2 - 1
 count = register2

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-11

12 Data Inconsistency Example

!  Say count = 5
!  Say producer produces an item and consumer consumes

one
!  count should still be 5 at the end of it

!  Assume the following interleaving of instructions:

!  We arrive at an incorrect value for count
!  the value may be different for a different execution order

T0: producer executes register1 = count {register1 = 5}
T1: producer executes register1 = register1 + 1 {register1 = 6}
T2: consumer executes register2 = count {register2 = 5}
T3: consumer executes register2 = register2 - 1 {register2 = 4}
T4: producer executes count = register1 {count = 6 }
T5: consumer executes count = register2 {count = 4}

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-12

13 Race Condition

!  An incorrect state for count was achieved because
both processes were allowed to manipulate it
concurrently

!  Race condition
!  several processes access and manipulate the same data

concurrently
!  outcome of the execution depends on the particular order of

access

!  Process synchronization is all about the prevention of
race conditions

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-13

14 Critical Section

!  Segment of code in which a process may be changing
shared data
!  common variables, tables, files, etc.

!  Two processes should not be executing in their critical
sections at the same time
!  one (or more) of the processes must be made to wait
!  also called having mutual exclusion

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

L9-14

15 A Good Solution

L9-15

!  No two processes may be simultaneously inside their
critical regions

!  No assumptions may be made about speeds or the
number of CPUs

!  No process running outside its critical region may block
other processes

!  No process should have to wait forever to enter its
critical region

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

16 References

L9-16

!  Chapter 2.3 and 2.5, Modern Operating Systems, A.
Tanenbaum and H. Bos, 4th Edition.

Pr
oc

es
s

Sy
nc

hr
on

iz
at

io
n

