
Porting UNIX
to the 386:

A Practical Approach
Designing the software specification

William Frederick Jolitz and Lynne Greer Jolitz

T
he University of California's Berkeley Software Dis­
tribution (BSD) has been the catalyst for much of the
innovative work done with the UNIX operating sys­
tem in both the research and commercial sectors.
Encompassing over 150 Mbytes (and growing) of

cutting-edge operating systems, networking, and applica­
tions software, BSD is a fully functional and nonproprietary
complete operating systems software distribution (see Fig­
ure 1). In fact, every version of UNIX available from every
vendor contains at least some Berkeley UNIX code, particu­
larly in the areas of filesystems and networking technolo­
gies. However, unless one could pay the high cost of site
licenses and equipment, access to this software was simply
not within the means of most individual programmers and
smaller research groups.

The 386BSD project was established in the summer of
1989 for the specific purpose of porting BSD to the Intel
80386 microprocessor platform so that the tools this soft­
ware offers can be made available to any programmer or

Prior to leading the 386BSD project, Bill was the founder
and CEO of Symmetric Computer Systems, a BSD-based
workstation and networking products manufacturer. He
was the principal developer of 2.8 and 2.9 BSD and the
chief architect of National Semiconductor's GENIX project,
the first virtual memory microprocessor-based UNIX system.
Prior to establishing TeleMuse, a market research firm,
Lynne was vice president of marketing at Symmetric Com­
puter Systems. She has produced white papers on strategic
topics for the telecommunications, electronics, and power
industries. Bill and Lynne conduct seminars on BSD, ISDN,
and TCP/IP, and are in the process of producing a book on
386BSD and a textbook focusing on the applications layer
of the Internet Protocol Suite. They can by contacted via
e-mail at william@berkeley.edu or at uunet/william. Copy­
right (c) 1990 TeleMuse.

research group with a 386 PC. In coordination with the
Computer Systems Research Group (CSRG) at the University
of California at Berkeley, we successively ported a basic
research system to a common AT class machine (see Figure
2), with the result that approximately 65 percent of all 32-bit
systems could immediately make use of this new definition
of UNIX. We have been refining and improving this base
port ever since.

By providing the base 386BSD port to CSRG, our hope is
to foster new interest in Berkeley UNIX technology and to
speed its acceptance and use worldwide. We hope to see
those interested in this technology build on it in both
commercial and noncommercial ventures.

In this and following articles, we will examine the key
aspects of software, strategy, and experience that encom­
passed a project of this magnitude. We intend to explore the
process of the 386BSD port, while learning to effectively
exploit features of the 386 architecture for use with an
advanced operating system. We also intend to outline some
of the tradeoffs in implementation goals which must be
periodically reexamined. Finally, we will highlight exten­
sions which remain for future work, perhaps to be done by
some of you reading this article today. Note that we are
assuming familiarity with UNIX, its concepts and structures,
and the basic functions of the 386, so we will not present
exhaustive coverage of these areas.

In this installment, we discuss the beginning of our pro­
ject and the initial framework that guided our efforts, in
particular, the development of the 386BSD specification.
Future articles will address specific topics of interest and
actual nonproprietary code fragments used in 386BSD. Among
the future areas to be covered are:

• MS-DOS utilities for beginning to port 386BSD
• 386BSD process context switching
• Executing the first 386BSD process on the PC

16 Dr. Dobb'sfournal, fanuary 1991

mailto:william@berkeley.edu

DON'T BATTLE WITH WINDOWS OR PM WITHOUT
YOUR SHIELDS!

DbxSfflELD An Inference Engine library that
eliminates the need to write dialog
box code. Handles all the complexity
of managing a dialog box—its
controls and messages. Advanced
features include formatted edit
fields, expanding dialog boxes.
Supports custom controls & all
dialog box constructs.

DemoSHIELD Create visually exciting demos more
than just slide shows. Link with your
applications to create custom hands-
on guided tours, demos & tutorials.
Works from within apps or stand­
alone. Bitmaps, icons, metafiles,
screen dumps & other graphics for­
mats supported. Powerful demo
language. Animation.

LogSHIELD Session recording & playback
library. Can be embedded in your
application. Record & playback all
keystrokes & mouse movements.
Use for macro recording, automated
testing, error recovery & remote
diagnostics. Link with applications
to create self-running demos &
trade show exhibits.

TbxSHIELD Easily create toolbox controls. Use
custom icons, bitmaps, metafiles,
text, owner drawn objects & more as
toolbox selectors. Variable sizes &
shapes. Animated buttons. Complete­
ly reusable software object library.
Includes new & innovative 3D
toolboxes: ToolCubes™, Prisms &
Pyramids.

MemSHIELD Fast, efficient & flexible memory
management library. Eliminates
memory management problems
inherent in Windows & OS/2 PM:
overhead, limited selectors, locking
& fragmentation. Improves overall
program performance. Increases
memory efficiency.

InstallSHIELD Build customized Windows or PM
installation programs. Create Win­
dows 3.0 & ToolBook like installation
programs for your application using
powerful install language. Help, %
complete & other feedback controls
built-in.

The SHIELD tools are especially created
for Windows & PM developers. Both
environments share an identical API for all
tools. Demo disks available.

Powerful, Flexible, fiQbfi^^B^Bbiriiirii^il^^iiQM^

^w The Stirling Group
Making it easy to make™

127 East Main Street • Roselle, Illinois 60172 • USA

Call (708) 307-9197 • Fax (708) 307-9340

CompuServe: 71370,2350 MCI Mail: STIRLING

CIRCLE NO. 537 ON READER SERVICE CARD

• 386BSD kernel interrupt and exception handling
• 386BSD INTERNET networking
• ISA device drivers and system support
• 386BSD bootstrap process

Getting Started: References, Equipment, and Software
Most software ports begin with the naive assumption that
the UNIX kernel is merely a C program with a handful of
functions, supporting other utility C programs on demand.
While in essence this is true, in practice this is a vast
oversimplification. Nevertheless, in the tradition of great
projects, we acquired a few tools and other items before
getting down to work:

• The Design and Implementation of the 4.3BSD UNIX Oper­
ating System by Leffler, McKusick, Karels, and Quarterman
(Addison-Wesley, 1989) and Programming the 80386 by
Crawford and Gelsinger (Sybex, 1987) were purchased from
a bookstore in Berkeley. Since no one on our team pos­
sessed any extensive technical background on either the
386 or the IBM PC, the 80386 book was our sole resource
for the microprocessor. The 4.3BSD book illuminated some
of the obscure areas and requirements of the BSD UNIX
operating systems kernel. We highly recommend these books.
Both books have become somewhat shopworn during the
process — the 80386 book has had it's covers taped twice,
primarily due to being thrown repeatedly across the room
in the general direction of the trash can. This book, while
the best resource available on the subject, is not as complete
as one might hope, primarily because the 80386 is a com­
plex animal and is enigmatic in the correct use of its many
features. Segmentation exception handling descriptions should
not be taken literally, although the book was of great value
when writing the first versions of exception handling code.
Some portions of the software were even determined em­
pirically. (Intel was not eager to provide any information.)
The single biggest problem encountered in our project was
that of inadequate 80386 documentation.
• A completely blank, inexpensive standard 386 AT clone
was the selected hardware platform. To minimize expenses
and to emphasize commonality, we chose to support only
the basic 386 platform.
• Using exploratory programs written in Borland's Turbo C,
we were able to explore the typical AT hardware. These
exercises permitted us to better understand the information
contained in IBM's Technical Reference Guide Personal
Computer AT, a classic if not obscure work. We then tested
the mechanisms inside the AT to make certain we knew
what must be provided in order to generate the necessary
software driver support for BSD UNIX.
• Our initial kernel source was the 4.3BSD Tahoe release
(available for an obscure machine, the CCI Power 6/32, and
as similar to the 386 as a can opener), at that time the most
stable and recent release.

All of these references and the equipment were examined
prior to generating even the first line of code. An under­
standing of the architectures of the hardware and software
is critical to developing an appropriate 386BSD specifica­
tion. Thus, we were able to ensure a successful port, even
when unanticipated problems arose.

Development of the 386BSD Specification
Once all the materials were gathered, the temptation was
to immediately sit at the PC and write code. This is a
temptation that should always be vigorously avoided. One
needs to sit down and carefully break down this project into
smaller bites. However, because many parts of this project

Dr. Dobb'sJournal, January 1991

3 8 6 B S D

are interrelated, we must insure that the internal standards
are uniformly maintained by all areas of the port and during
all phases. In other words, the bridge must meet in the
center.

Therefore, instead of plunging directly into development,
we began the most critical phase of this (or any) port — that
of creating the 386BSD specification. This specification ad­
dressed the following major issues:

• Segmentation and paging
• Virtual and physical address space
• Process context description
• System call interfaces
• ISA device requirements
• Microprocessor idiosyncrasies
• Bootstrap

Unlike a commercial specification, the 386BSD specifica­
tion was intended to be lightweight and flexible. We wanted
to focus 386BSD without making the specification a major
work in itself. We also knew that many of the finer points
would change as we got closer to our goal.

The Definition of the 386BSD Specification
At first glance, the choice of the 386 microprocessor and ISA
system architecture appears to define the operating system's
machine-dependent requirements. For example, on the origi­
nal 8088 PC to the present, MS-DOS would use the software
interrupt INT $XX instruction to dispatch through the inter­
rupt vector table entry XX, and then dispatch to the desired
system call inside MS-DOS. This was the only way applica­
tion programs could call the operating system.

Had this regularity been true for the UNIX operating
system, all 80^86 UNIX systems would be alike, and the
development of a specification would be a simple task.
However, in exploiting the power and flexibility of UNIX,
one is faced with a grander specification. The kernel archi­
tect is now faced with competing alternatives. With UNIX,
the choices are no longer "cut and dried."

Adding to this dilemma, the 386 is at least two generations
beyond its simple ancestor. The enhanced features the 386
now offers allow us many competing ways to satisfy a UNIX
system design. Continuing our example, instead of using the
INT $XX instruction, we can use the intersegment LCALL
instruction to call the operating system through call gate
segments. We can use some powerful features of the 386,
but at the cost of a more elaborate mechanism. Is it worth it?

Unix Family Tree

PWB(UTS1.0)

System 3

System 5.1

System 5.2
I

System 5.3

System 5.4?

AT&T
Bell Labs

V8

V9

2.8BSD

2.9BSD

2.10BSD

3BSD

4.0BSD

4.1 BSD

4.2BSD

MACH

I
4.3BSD

UNIX Intl
(AT&T)

OSF/1?

CMU OSF

4.4BSD?

Univ. Calif.

Figure 1: The UNIX family tree

18

In this case, the LCALL instruction can be used to support
reverse compatibility with other versions of UNIX in the
form of an applications package rather than within the
operating systems kernel, and thus may be worth the effort.
However, choosing among the myriad, often conflicting,
alternatives is typically a task fraught with peril.

For the 386BSD project, we first determined our priorities:
100 percent BSD kernel and user functionality. The system
must contain all important underlying mechanisms of the
Berkeley UNIX system. Any extensive modification pertain­
ing to how Berkeley UNIX functions on other extant plat­
forms can result in incompatibility. Incompatibility is like
an irritating insect that bites in many places — and tends to
lay hidden until after extensive distribution. As such, we did
not exploit some features of the 386, such as its elaborate
segmented architecture, at the expense of incompatibility.

Efficient use of the native processor architecture. We
would like to use the system in ways to obtain the highest
performance and greatest functionality possible.

Interoperability with existing commercial standards. We
would like to use the system in ways which maintains
compliance with extant commercial standards. We do not
intend to unnecessarily create arbitrary new standards if
current standards are acceptable.

Rapid implementation of the basic operating system. One
maxim of any UNIX development effort is "the best tool to
build a UNIX system IS a UNIX system." We needed to
bootstrap ourselves rapidly into operation and leverage
386BSD itself to complete the project.

Conflicts in Priorities
These basic priorities inherently conflict. For example, BSD
systems have basic incompatibilities with the AT&T System
5 UNIX systems, because each project has firm interests and
no compelling need to cooperate. As such, perfect compati­
bility is impossible to achieve given our project focus. The
opposite tact, no compatibility constraints, is also not com­
pletely acceptable, because we are dealing with the PC class
of computers and not minicomputers or workstations. Fine
grain differences also exist among the many standards cur­
rently competing for favor in the world of 386 UNIX systems.

386BSD Port Goals: A Practical Approach
Given all of these trade-offs, we decided to take what we
call a "practical" approach to 386BSD. We concentrated
primarily on "hard adherence" to both BSD operability and
high-performance implementation, for the simple reason
that 386BSD is a research project intended for use by the
research community. However, because even this audience
depends on commercial resources, we decided to invest
some of our effort in the development of a few fundamental

Unix Family Tree

How 386BSD Relates to Other BSD Releases

4.3BSD

386BSD

- 4.3 Tahoe

4.3 Reno

4.4BSD?

Figure 2: 386BSD and other BSD releases

Dr. Dobb'sJournal, fanuary 1991

EverythingYw Ever Vented In UNIX.
And Less. *99.95.*

OK. We know it's hard to
believe. So just consider this.
Coherent™ is a virtual clone of
UNIX. But it was developed
independently by Mark
Williams Company.
Which means we
don't pay hundreds of
dollars per copy in
licensing fees.

What's more,
Coherent embodies
the original tenet of
UNIX: small is beautiful. This
simple fact leads to a whole host of
both cost and performance advan­
tages for Coherent. So read on,
because there's a lot more to
Coherent than its price.

SMALLER, FASTER.. .BETTER.
Everybody appreciates a good

deal. But what is it that makes small
so great?

For one thing, Coherent gives
you UNIX capabilities on a machine
you can actually afford. Requiring
only 10 megabytes of disk space,

LESS
IS MORE!

No. of Manuals

No. of Disks

Kernel Size

InstallTime

Suggested Disk Space

Coherent For

the IBM-PC/AT

and compatible

286 or 386 1

based machines.

1

4

64K

20-30 min.

10 meg

Min. Memory Required 640K

Performance*

Price

38.7 sec

$99.95

an

8

21

198K

3-4 hours

30 meg

1-2 meg

100.3 sec

$1495.00

*Byte ExedbewiffiQaik,1000 iterations on 20 MHZ 386.
Hardware requirements: 1.2 meg5W*or 1.4 meg3te"floppy, and
hard disk. SCSI device driver available soon. Does not run on
MicroChannel machines.

Coherent can reside with DOS. So
you can keep all your DOS applica­
tions and move up to Coherent. You
can also have it running faster, learn it
faster and get faster overall perform­
ance. All because Coherent is small.
Sounds beautiful, doesn't it?

But small wouldn't be so great if
it didn't do the job it was meant to do.

EVERYTHING UNIX
WAS MEANT TO DO.
like the original UNIX,

Coherent is a powerful multi-user,
multi-tasking development system.
With a complete UNIX-compatible
kernel which makes a vast world of
UNIX software available including
over a gigabyte of public domain
software.

Coherent also comes with Lex
and Yacc, a complete C compiler and
a full set of nearly 200 UNIX com­
mands including text processing,
program development, administrative
and maintenance commands.

And with UUCÎ the UNIX to

UNIX Communication Pro­
gram that connects you to a

world-wide network of free soft­
ware, news and millions of users.

All for the cost of a phone call.
We could go on, but stop

we must to get in a few more very
important points.

EXPERIENCE, SUPPORT

AND GUARANTEES.
Wondering how something as

good as Coherent could come from
nowhere? Well it didn't. It came from
Mark Williams Company, people
who've developed C compilers for
DEC, Intel, Wang and thousands of
professional programmers.

We make all this experience avail­
able to users through complete techni­
cal support via telephone. And from
the original system developers, too!

Yes, we know $99.95 may still
be hard to believe. But we've made it
fool-proof to find out for yourself.
With a 60-day money-back no-hassles
guarantee.

You have to be more than just a
little curious about Coherent by now.
So why not just do it? Pick up that
phone and order today.

You'll be on your way to having
everything you ever wanted in UNIX.
And for a lot less than you ever
expected.

1-800-MARKWMS
(1-800-627-5967 or 1-708-291-6700)
60-DAY MONEY BACK GUARANTEE!

Mark Williams
Company
60 Revere Drive
Northbrook, IL 60062

•Plus shipping and handling. Coherent is a trademark of Mark
Williams Company. UNIX is a trademark of AT&T. XENIX is a
trademark of Microsoft.

' ^

CIRCLE NO. 66 ON READER SERVICE CARD

20

3 8 6 B S D

(continued from page 18)
areas such as System Call Interface Definition.

By dealing with these basic areas, we allowed for limited
adherence to commercial standards from the start, with the
ability to gradually extend 386BSD as needed. (For exam­
ple, in future releases we hope to offer some degree of
support for segmentation and VM8086 mode.) We have also
tried, when possible, to conform to the spirit of the 386
Application Binary Interface (ABI) and its predecessor Bi­
nary Compatible Standard (BCS) when they did not conflict
with our adherence to Berkeley UNIX.

The 386paging mechanism impacts

the 386BSD specification with respect

to address space allocation constants:

Each page is 4 Kbytes in size and

must reflect the minimum granularity

of address space allocation, while

each page of page tables maps 4

Mbytes of address space

Some may take issue with this stance, seeing binary
compatibility standards entirely as an "all or nothing" issue.
Those who spend a great deal of time arguing over the big
end and the little end of the ABI egg are usually involved
in maintaining control over the shrink-wrap commercial
software market. However, those who wish to ignore the
ABI juggernaut are also ignoring the largest body of UNIX
software outside the research community. In this case, igno­
rance is simply a mask for arrogance. As we stated earlier,
we have tried to take a "practical" approach that builds in
the flexibility without altering the scope of our project.

Many people wonder why UNIX systems are so big and
complex. A look through any UNIX kernel can quickly
answer this question. Many different groups prefer to fur­
ther standard agenda by claiming a piece of the kernel for
their own use, instead of redesigning it for common support
or moving things out of it that really belong in an applica­
tion process. SVR4 alone is rumored to contain 14 different
filesystems which are just a variation on a theme. This
"Chinese menu" approach to kernel design has resulted in
a bloated kernel that is difficult to enhance or maintain.
Because standards by accumulation just don't work, with
386BSD we strive to avoid such nonsense.

Another goal of our project was to insure that all code
developed for the 386-specific portions of this project be
unique and novel. This is to prevent any particular commer­
cial agent from arbitrarily appropriating, monopolizing, or
prohibiting discussion and distribution of this code. This is
the major reason why we are able to examine some of the
interesting mechanisms of 386BSD without the censorious
effect of proprietary license agreements.

Microprocessor end System Specification Issues
Our specification required that we break it down into two
basic technical areas: the microprocessor itself and the sur-

Dr. Dobb'sJournal, January 1991

System Arllutectl^^ to handle
your most complex app|icati|ns. And it's so
easy to usey even beginners i^ill be produc­
tive in no time.

Normal­
ization

Automated
documentation

Multiple
methodologies

User-defined
attributes

Requirements
traceability

Rules &
balancing

Import/export
capability

"The software's incredible
ease of use belies the
power hidden within."
Computer Language

System Architect works
with such methodologies
as DeMarco/Yourdon,
Gane & Sarson, Ward &
Mellor (real-time), entity
relation diagrams, decom­
position diagrams, object
oriented design (optional),
state transition diagrams,
and flow charts.

"System Architect stood out from many other pros­
pects because it had the best core technology."
Toshiba Corporation

With System Architect, you get support for an inte­
grated data dictionary/encyclopedia, and multi-user
support both with and without a network. And
System Architect's open architecture lets you easily
import and export data to other products.

" We're surprised with its flexibility and much taken
with the idea of being able to link different kinds of
diagrams..."Cutter Information's CASE Strategies

Sy | ! |m A | | h i t | | t i§ |
Wiit(|ows-bI§ed| has coffin
novice mode.

"SAis an excellent value."
CASE Trends

RELEASE 2.1
Super

type

SQL-like
custom
Reporting

Auto
leveling

Integrated
data
dictionary

At $ p 9 5 , System Architect is
quite affordable. And it runs
oh almost any PC.

"...truly a price performance
leader." System Builder

For a powerful CASE product
that's easy to use and afford­
able, look to System Architect.
It^s the right concept for CASE.

FOR MORE INFORMATION,
CALL (212) 571-3434

POPKIN
Software & Systems Inc.
11 Park Place, NY, NY 10007
(212)571-3434
Fax: (212) 571-3436

MICROSOFT
WINDOWS

SystemArchitect

Supporting IBM's AD/Cycle
System Architect logo is a trademark of Popkin Software & Systems Incorporated. IBM is a
registered trademark of IBM Corp. Microsoft is a registered trademark of Microsoft Corp.
Pnce shown valid only for USA & Canada. Prices and specifications are subject to change
without notice at the sole discretion of the company. Product delivery subject to availability.
Please call for the name of the nearest international distributor.

CIRCLE NO. 321 ON READER SERVICE CARD

3 8 6 B S D

Process Memory Reference Linear Address Space
(segment register and offset) . D T

DS(15:3)-

DS:SA

| descript |

GDT
• sd.sd_base + SA

Linear Address Space

Page Table Di rectory

VA •

<•-•• .

ptd[VA(31.22)]j

cr3

| Pde |

Physical Memory

A Page Table

pt[VA(21,.12)]

pc

I P»e I

e.pf num

Physical Page of Data

VA(11..0)

| Data |

pte.pf num

Figure 3: 386 memory management: (a) segementation
(b)paging

(continued from page 20)
rounding system hardware. In keeping with our goals, we
segregated the two in order to allow future support for other
buses (such as EISA and Micro Channel) and to avoid
obscuring microprocessor issues.

The microprocessor required much delineation in the
areas of segment and paging strategies, virtual memory
allocation and other memory management issues, commu­
nications primitives, context switching, faults, and the sys­
tem call interface. We also had to factor in microprocessor
idiosyncrasies and bugs as we went along. On the system
side, we concentrated on ISA bus considerations.

We first outline some of the major issues revolving around
the 386 microprocessor itself and how they relate to a
Berkeley UNIX port.

386 Memory Management Vitals
Most popular microprocessors use either segmentation or
paging to manage memory address space access. The 386
is rare in that it possesses both. In fact, since segmentation,
(Figure 3(a)), is placed on top of paging (Figure 3(b)), you
are expected to use segmentation in some form any time
memory is paged. And, most important, BSD relies on
paging.

All operand references on the 386 are tied to one of the
segment registers. This segment register uses a 16-bit selec-

386 Segmentation and Paging
The 386 has six segment registers (CS, DS, SS, ES, FS, and
GS) which can select one of 16,383 (8,191 shared and 8,192
private) segment descriptors. These segment descriptors
reside in either the Global Descriptor Table (GDT) or the
Local Descriptor Table (LDT) and determine underlying
characteristics (type attributes, location in linear address
space, and segment size). In addition to memory seg­
ments, system segments are available to the operating
system for special purposes and call gates to facilitate
controlled indirection into other possibly hidden segments.

Memory segments can be selected via a dedicated seg­
ment register, with different results. The CS register con­
tains program instructions. The DS register selects program
data. The SS register selects the program stack. The ES
register selects the destination of string instaictions. Both
the FS and GS registers are undedicated at this time. It is
even possible to reassign the segment registers in the
machine instructions, so one can view the ES, FS, and GS
segment registers as alternative DS segment registers.

Each memory segment has a size, and can be as large
as 4 gigabytes. In order for that segment to be active,
however, it must consume space (global linear address
space) in direct proportion to its size. This means that,
although a process may possess a total address space
greater than 4 gigabytes, only an aggregate of active seg­
ments totaling less than or equal to 4 gigabytes is permit­
ted. While the 386 theoretically can address 214 x 246 bytes,
in practice only 232 bytes (4 gigabytes) can be active at any
time. If the maximum 4 gigabytes of instruction, data, and
stack (for both operating system and each user process)
is invoked, managing the global linear address space to
allow segments to be active (present) when linear address
space is available becomes a significant problem.

Segments can also be overlapped in linear address space.
Because through both segments we can access the same
memory interchangeably, possibly with different attrib­
utes, this overlap is called an alias.

80^86 segments can be either "bottom up" or "top
down." A segment that is bottom up means that one begins
with segment relative address 0 and "grows up" to the
desired address x (that is, [0 . . . x]). A segment that is top
down means that one begins with segment relative ad­
dress Oxffffffff and "grows down" to the desired address y
([y . . . Oxfffffffl). (Yes, we know this is awkward, but
that's how it works). Segments are grown only in accor­
dance to these rules. The stack segment is the only com­
mon example of a downward growing segment.

Many other attributes are provided that control the type
of access allowed within the segment. The designers of the
386 prefer segments be used in memory protection regula­
tion, and have provided a plethora of features not found
in the paging unit. Segment attributes, such as 32-bit vs.
16-bit operations, byte vs. page granularity, and user vs.
supervisor mode, control the mode of the microprocessor,
depending on the segments that are actually in use.

It is quite costly to implement segments in the microproc­
essor. That is why underlying shadow registers, invisible
to the programmer, are used. They provide a hardware
"assist" to the segmentation functionality.

We manage to avoid many paging bookkeeping prob­
lems by running in "flat" mode. This is accomplished by
aliasing the CS, DS, SS, and ES segment registers to the
exact same linear address space (see Figure 4), thus mak­
ing it an identity function. We can then regard any of the
intrasegment addresses as if they were linear address
space. Of course, this ends up defeating the advantages

22 Dr. Dobb'sJournal, January 1991

tor (low-order bits determine level of access) to find a
descriptor. This descriptor then determines the location of
underlying memory in linear address space. When segmen­
tation alone is enabled (also known as protected mode), the
linear address space corresponds to the physical address of
the selected segment for the operand. However, when pag­
ing is implemented, the linear address space address must
be run through a two-level paging mechanism to find the
physical page frame number, the actual address of physical
memory underneath the virtual address.

One of the most powerful, yet confusing, features of the
386 is its segmented architecture. While the current trend in
microprocessors has been oriented towards a single "flat"
linear virtual address space, the 386 has continued the bias
toward segments held by the entire 80.%86 line. The two
most important changes in the 386 from previous versions —
permitting 32-bit operations and expanding segments from
64 Kbytes to 4 gigabytes in size — may turn some of the
inherent disadvantages of 80.%86 segments into an advan­
tage. Segments once too small for many data items (such as
arrays of real numbers) can now utilize alternative address
spaces. This is of great interest to those working with
specialized applications, such as 3-D to 2-D transformations.

Segmentation and 386BSD
UNIX was initially developed on machines that relied on

of segments as well.
Some new microprocessors, such as the 386, feature

architectures which exploit large segments. This is be­
cause 4 gigabytes is starting to fill up, and going to 64-bit
addresses will not be happening soon. Many would argue
that 4 gigabytes will never be filled, but history states
otherwise. 64-Mbit RAM is already on the drawing boards —
in fact, some actually exist. In a few years, it will be
commercially available. Because a typical computer uses
on average 64 to 128 RAM chips, with many companies
currently offering 64-Mbyte systems (512 1-Mbit RAM), it
will not be long before a computer with 512 64-Mbit RAM
chips (4 gigabytes) is introduced. As such, segmented archi­
tectures may provide a way of spanning the address space
gap that could result.

It's amazing that at the beginning of the microcomputer
revolution, an Altair 8800 with 4 Kbyte of RAM was consid­
ered incredible because it could run Basic! How times change.

We have seen how segmentation works in the 386. Now
let's examine paging. For our purposes, segmentation on
the 386 is defeated by running in "flat" mode. We can then
consider intrasegment addresses as if they are linear ad­
dress space.

Paging works with a two-level scheme that permits the
sparse allocation of address space, so that the whole
address space, or even all of the address space mapping
information, need not be present. Otherwise, a 4 gigabyte
process would require more than 4 Mbyte of page tables,
even though it may be the case that only a few thousand
would be active at any time. Typically, for our purposes,
only three pages of page tables are allocated per process
(page directory and the top and bottom address space
page tables). This is sufficient to run a 4-Mbyte process
(instruction plus data size) and 4 Mbyte of stack. (Note
that all processes run with a full-sized address space and
can dynamically grow to use it.) This mechanism is quite
successful in reducing memory-management overhead.

Dr. Dobb'sJournal. January 1991

linear virtual address spaces. As such, Berkeley UNIX pro­
vides no support for segments and instead expects a large
linear virtual address space for both kernel and user. In fact,
UNIX in general adapts to segments only under duress.

Originally, we had intended to use segments in a straight­
forward manner. However, we found that would result in a
host of nuisance problems. For example, many programs
(debuggers, assemblers, and object-linking editors) must
be modified so that separate address spaces for the various
regions could be maintained. Object file format, always in
a state of flux due to the varying degrees of dynamic loading
of instruction and data structures, would require change.

Another problem which arises when using segments is
that the shared data in the instruction segment requires strict
typing in the assembler (we force instructions to reference
the CS segment directly) to obtain access. Because some
compilers put data constants in the code area with the intent
of sharing memory used by other processes, invoking seg­
ments would create little problems everywhere for the com­
piler.

Still other problems result from the use of string instruc­
tions on stack resident data and that time honored bad
practice known as self-modifying code. The key flaw in all
these cases is that the binding to the particular segment
register is mandated by the assembler, and cannot be prop­
erly resolved by the object code linker as other symbols are

The two-level scheme splits the incoming virtual ad­
dress into three parts: 10 bits of page table directory index,
10 bits of page table index, and 12 bits of offset within a
page. The page table directory is a single page of physical
memory that facilitates allocation of page table space by
breaking it up into 4-Mbyte chunks of linear address space
per each of its 1024 PDEs (Page Directory Entry), which
determine the location of underlying page tables in physi­
cal memory.

Each PDE-addressed page of a page table contains 1024
PTEs (Page Table Entry). A PTE is similar in form and
function to a PDE. The major difference between a PDE
and a PTE is that a PTE selects the physical page frame for
the desired reference. Once the frame offset least-signifi­
cant address bits are obtained, the final address is deter­
mined. This method is identical to that used in many other
common microprocessors (the MC68030, Clipper, and
NS32532, among others).

Each PDE and PTE may be marked either "invalid" (not
currently used) or "valid" (the underlying page of physical
memory is present). In addition, other attribute bits mark
entries as "read only" or "read-write" and "supervisor" or
"user." Because segmentation is not used to control mem­
ory protection, we keep processes honest by relying en­
tirely on the paging mechanism's attributes for protection
as well as for the allocation of memory.

The mechanism to convert virtual to physical addresses
is quite elaborate. To speed things up, the 386 keeps a
Translation Look-aside Buffer (TLB) of 64 cached entries,
managed entirely transparently. One side affect of this
hardware is that if the operating system changes any of the
page tables that may be in use, it must flush this cache.
The 386 does not allow selective flushing — only a com­
plete flush of all cache entries by reloading the page
directory address register cr3. This is an expensive opera­
tion which may be repeatedly performed as we succes­
sively transform an address mapping of a process within
the kernel (as many as six times in the worst case).

- B . J . , LJ.

23

Microcomputer
Engineers
Advanced Development
Thomson Consumer Electronics, designer and manu­
facturer of RCA and GE brand consumer electronics
products, is a global leader in the development of new
television technologies. Our Indianapolis advanced de­
velopment facility, an integral part of our worldwide
network of R&D labs, has immediate opportunities for
experienced microcomputer engineers to join our TV
Control Systems development group.

Qualifications must include a BS (or advanced degree) in
Electrical Engineering, and a solid background in com­
puter science/engineering. Experience in designing with
embedded microcomputers is essential. In addition to
microcomputer hardware, a high proficiency in assem­
bly and high level languages such as "C" is required.

Thomson offers excellent salaries and benefits, plus
exceptional opportunity for professional growth
with a global industry leader. Please send your resume
and recent salary history, in confidence, to Professional
Relations, M.S. 27-134-MC, Thomson Consumer
Electronics, P.O. Box 1976, Indianapolis, IN
46206-1976, or FAX to (317) 231-4203. An equal

SOFTWARE DEVELOPERS:
Shadow Adds Integrated BACKUP Capabilities To Your
Applications In A Matter Of Minutes - For Pennies Per Copy!

• Imagine all of your applications having a BACKUP and a
RESTORE selection from the main menu. Your end-users
will be relieved from the burden of using DOS's primitive
programs, or from using a non-integrated commercial
BACKUP/RESTORE program.

• Includes full C source with link, make, and project files.

• Many more features than DOS BACKUP/RESTORE (for
example, It works on all version of MS- and PC-DOS from
version 2.00 up, and will estimate the number of disks
needed to backup).

• Automatic CCITT CRC file integrity verification is used to
insure data integrity.

• Includes on-disk documentation ready for incorporation into
your existing product Owner's Manual.

• High performance data compression. Utilizes all available
RAM for lightning fast file transfers.

• Robust file architecture allows for recovery of damaged files.

• Includes five user interfaces, TTY, full screen, command line,
batch file, or custom.

INCLUDES A SINGLE-PRODUCT REDISTRIBUTION UCENSE
AND A 30-DAY MONEY-BACK GUARANTEE.

Add an extra touch of professionalism to your product

ORDER NOW TOLL FREE 1-800-331-2783
KNOWLEDGE DYNAMICS CORPORATION
Highway Contract 4 Box 185-H, Canyon Lake, TX 78133-3508 gfr/%g\

1-512-964-3994X1001 MC/VISA/COD/Purchase Order $ 2 9 9 . 9 5

CIRCLE NO. 340 ON READER SERVICE CARD

3 8 6 B S D

normally handled.
Given all of the problems which arose and, in accordance

with our 386BSD goals, we chose to minimize support for
segmentation by running the machine in "flat" mode. As a
result, no tinkering with object file format or tools was
required. An amusing side effect of this approach is that it
allowed us to cross-develop 386 code on VAX and NSC32000-
based computers using the native object utilities. This choice
minimized bookkeeping considerably but also ultimately
defeated the purpose of segments. A more elaborate design
was beyond the scope of our project.

Kernel Linear Address Space Overhead
The kernel, as well as the user mode programs, requires its
own set of segment registers. If the kernel is called, its
segments must be present. This takes up precious linear
address space. Thus, we can never run a process exactly 4
gigabytes in size because a portion of the address space
must be reserved for kernel use. Even if we try to use
segments to relocate the kernel, we cannot escape the
limit — it not only takes up the same linear address space
but also forces us to use intersegmental instructions to
communicate data between user process and the kernel.
Since the user, the process, and the kernel must share virtual
address space, we limited ourselves to a maximum process
size of 4 gigabytes less the kernel size.

The kernel segment registers are outlined in Figure 4.
These segment registers cover (alias) the user segments and
allow access to the user space from the kernel in any way
desired (read, write, or execute). Because all segments start
at zero, the kernel begins at a high address (or offset) and
always runs relocated. In 386BSD, the code segment just
covers the end of the kernel instruction region, because no
self-modifying code was needed.

One way to avoid linear address space sharing constraints
is to have all interrupts, traps, exceptions, and system calls
internally context switch to a separate process to execute
UNIX system functions, using the 386 trap with task switch­
ing feature. This unique 386 hardware allows traps to be
handled by either procedures or tasks. However, task switch­
ing is very expensive and the system would context switch
thousands of times more frequently than otherwise. Also,

(continued on page 28)

OxFFFFFFFF [~

OxFEOOOOOO

Linear
Address
Space

Kernel DS,ES,SS

Kernel CS

J UserCS,DS,ES,SS |

Kernel
Global
Address
Space

User
Process
Private
Address
Space

Figure 4: 386BSD segment registers

24 Dr. Dobb'sJournal, January 1991

&RMGP£IINglBrIEWTION V2.1

Zortech C+ +
MS-DOS • WINDOWS • OS/2 • DOS 386 • UNIX 386

applications in this exciting new
environment. Do you need
MS-Windows class libraries? Call for
details of third party Zortech Validated
Products.

OS/2 ^
The OS/2 Developer's Edition now
provides a C++ Compiler and source
level Debugger designed for C++. In
the words of OS/2 Magazine:

^Zortech C++ serves as a
direct replacement for the
Microsoft C Compiler in
developing applications,
allowing programmers to use
object-oriented techniques in
OS/2 development"

The OS/2 Developer's Edition also
includes C++ Tools, Flash Graphics
and C++ Workbench for OS/2
together with the standard DOS
Developer's Edition.

Upgrades for existing OS/2 Compiler
Option owners now available. Please
call for details.

$* UNIX 386 ^
Not a day passes at Zortech HQ
without numerous requests for a
UNIX version of Zortech C++. Now,
DOS and OS/2 developer's can reach
new markets by easily moving their
code to SCO UNIX 386 and binary
compatibles.

The Zortech
C++V2.1
UNIX 386
Compiler
generates the
same tight,
fast code that
Zortech's DOS
and OS/2

users have come to expect. UNIX
specific versions of Flash Graphics

UNIX 386 EDITION

and the C++ Workbench are also
provided.

In line with the traditional Zortech
Policy, owners of the Zortech C++
V2.1 UNIX 386 Compiler will be able
to inexpensively upgrade to the
forthcoming Zortech C++V2.1 UNIX
386 Developer's Edition.

DOS 386 YV ,eH
Now, with the 386 you can address up
to 4 Gigabytes of memory. Why
spend so
much
money on
386
hardware
and not use
software
which will
take
advantage
of it?

On the
other hand,
you need to
retain the facilities of standard
MS-DOS too.

MS-DOS developers can now build
true 32 bit C and C++ applications for
386 processors using Zortech's
powerful 386 development system.
The Zortech C++ V2.1 Developer's
Edition for DOS 386, contains 32 bit
versions of the C and C++ Compiler,
Flash Graphics library, C++ Debugger
and full standard library source code
together with all the familiar features
provided with the standard DOS
Developer's Edition.

Using Phar Lapp's much acclaimed
386/DOS Extender Technology, you
can build applications which access 4
Gigabytes of linearly addressable
memory. Your applications will also
be Plug & Go for use with Phar
Lapp's 386 DOS Extender which
may be purchased seperately.

CIRCLE NO. 257 ON READER SERVICE CARD

C++ VIDEO COURSE
Zortech's C++ Video Course is all the
training material you need to move a
team of good C programmers into the
world of C++. Many corporations
have already done just this.

Cut the hotel bills, travel expenses
and fees of outside training courses
and seminars - not to mention the
inconvenience and disruption to your
normal routine.

Use a proven training tool,
that in one hour a day, over a
period of six weeks, can train your
whole team in C++ for the price of
one airline ticket.

The course consists of 32 tutorials on
six one hour VHS tapes together with
one 256 page workbook containing
course notes and exercises. Unlimited
additional course workbooks are
available at modest cost.
Compiler & hardware j f v ^
independent. NTSC or PAL / Q^T
format available. * rs^^

3 8 6 B S D

(continued from page 24)
the UNIX kernel is not intended to run itself as a process,
as use of this feature would require.

Virtual Address Space Layout
Within the 4 gigabytes per process address space, a process
must be allocated regions for instruction, data, and stack for
both user programs and the kernel. Some of these regions

OxFFFFFFFF

unixsize + OxFEOOOOOO

Kernel Base OxFEOOOOOO

Empty (usable)

Kernel Data

Kernel Instruction

Per process (u.)

User Stack

Empty (usable)

User Data

User Instruction

Kernel
Global
Address
Space

User
Process
Private
Address
Space

Figure 5: 3S6BSD process virtual address space

8086/88, 80x86/88
80386

• Fast, rel iable operat ion
• Compac t and ROMable
• PC per ipheral suppor t
• DOS fi le access
• C language suppor t
• Preemptive scheduler
• T ime sl ic ing available
• Conf igura t ion Bui lder
• Complete

documenta t ion

REAL-TIME
MULTITASKING

KERNEL

68000/10/20
Z80, 64180, 8080/85

m Intertask messages
• Message exchanges
• Dynamic operat ions

— task create/delete
— task pr ior i t ies
— memory a l locat ion

• Event Manager
• Semaphore Manager
• List Manager

No Royalties
Source Code Included

Manual only $75 US
AMX 86 $3000 US
(Shipping/handling extra)

Call for prices for
other processors.

KADAK Products Ltd.
206-1847 West Broadway
Vancouver, B.C., Canada
V6J 1Y5

J k Telephone: (604) 734-2796
I F Fax: (604)734-8114

CIRCLE NO. 259 ON READER SERVICE CARD
28

(user data, user stack) must grow as a process runs, and
support must be available for additional regions used for
shared memory and shared/dynamically loaded libraries.
The size of these regions and their placement becomes an
important consideration for any UNIX port.

The traditional UNIX approach is to place the instruction
region at the beginning of the address space, followed by
data, unused space, and finally a stack region. The purpose
of the empty space is to build in room so that the stack can
grow down and the data (for heap storage) can grow up.
The end-point is known in UNIX vernacular as the "break."
Usually, text starts at absolute virtual address 0.

A problem common with UNIX systems arose from the
extensive use of uninitialized string pointers, which by
default were set to the value 0. Because the first word at
address 0 was also set to 0, this meant that null pointers
always pointed to null strings. However, many early com­
puters did not permit the bottom of address space to be
used in this way and a tested program would abort. UNIX
code that was thought "proven" on the PDP-11 and VAX
was actually masked by the development system architec­
ture. Eventually, many uninitialized pointers were located
and corrected. Some versions of UNIX also leave the very
bottom and top of address space unmapped to catch in
directions through 0 and -1 . This method is of limited
effectiveness, however, if a structure referenced through
such a pointer is bigger than the size of the bottom and top
address space holes.

386BSD virtual address space is arranged in the traditional
manner (see Figure 5). The user address space begins at
zero with text, (yes, we do indeed have 0 at location 0),
followed by data, unused space, and finally the stack. The
start of the user stack, located at the top of the user's address
space, is not fixed. (A future project may utilize this feature
to "lower" the stack, providing room for dynamically created
regions.) Because only the operating system needs to know
the exact location of the user stack, it assigns the stack's
address space on process program load (exec system call).

Per-Process Data Structures
The kernel address space resides above the user portion of
the process virtual address space. By virtue of being co­
resident in the virtual address space with the user space (a
somewhat mandatory virtue), the kernel can directly refer­
ence any part of the current running user process in the
lower portion of memory.

As in the user space (and in UNIX executable files), kernel
instructions and data are arranged consecutively. The stack
and a new special region, the per-process data structure or
user structure (u. for short), appear below the kernel. One
advantage of this arrangement is that it becomes possible
to share all portions of the page tables for address space
above the kernel base address. Notice that though this is a
vital part of the kernel, it is technically at the very top of user
address space and is purposely left readable by the user
process. Everything beneath the system base address is
switched when a context switch to the next process occurs.

Currently, the kernel address space starts at virtual ad­
dress OxfeOOOOOO, and allows up to 32 Mbyte of address to
be reserved for use within the kernel. This boundary can
be moved at a later date if more address space is needed.

Access to the ISA bus device memory (screen and IAN
buffers) is obtained through an allocated region of the
kernel memory, known as a utility page map. This is similar
to portions of on-demand physical memory used by the
kernel through other utility page maps. The kernel also has
a variety of data structures scaled and allocated at boot time
(valloc) and a heap for dynamic demands (malloc).

Dr. Dobb'sJournal, January 1991

t/Views
^^'gof Microsoft Windows

> * T

THE MKMJSQFrlfepo^

* $ ^ -

H- ,^ : I
-A FR(M^iMTTb!FiKi

•%'" v> w Jew® is a development tool for C++ programmers
thatnof only; reduces the complexity of Microsoft" V
Windows 3.5 but also flashes development time bKip

^to/5%4.:- v*r':;-> ' *

Delivers onthepmmisetf -
Programming (OOP) * < -"'*
Encapsulates moreJVIS Windows 3.0 functionality than
any other toolijn the mlrkgt today. Get MS Windows
applications off to a fast-start with a framework of over

-.65. tested and ready-to-go C++ classes.

i l l t i i t
Pr<m<te$^ ; ;^ | „;

Coi |e£ \v i^

5 ^ | | p | B s o ; incl^^

prMJffi i .^

Combine fif*M^
a cog>effe<^
envifonmf^^
systems. ; :;||^5|f Ĵ S Î
envifpnm^l^

1 jfc'

fHas the most complete C++ class library for A1S*
* Windows Development. '^^f^^M^^^M^B^t

Get started with graphical user interface classes such ^ ^ ^ ^ § 4 ^ ^ ^ ^ ^ § ^ ^ . ~m

.windows, views, bitmaps, dialog boxes, menus, popup %^^^M^^^^^ok.^-
-" menus, graphics, regions, pens, bmshes, controls, "•. " l l i ^

buttons, listboxes, valuators, editors, printers and much
more. Organize your data with foundation classes such
as containers, collections, sets, dictionaries, files, strings;
streams and so-on. ,Use other classes to manage the

if.'pe/sistance of objects across files, to perform serial

-f'**
^Communications, and to activate timed events

: , « y « l l l from CNS,1hc,i
GNSiinisioftwar^Products ©epit
7090fShaay; Oak fflad^MirfieapoliSfMN 65344
(6i2}l944-Qim '-FAX {612^44D923, -« "^
© G o p y n | | 1 ^ C ^ n e ; A y i ^ reserved, Mic^ftsa "*

CIRCLE NO. 457 ON mf^$§^§§^S^^^^^

Mcnuef also offers the powerful Infirfact I W ^

interactively edit and prototype your application with autgaiafe ipiirce code

generation.

M c n u c l $ 3 2 5 No Royalties

CIRCLE NO. 286 ON READER SERVICE CARD

3 8 6 B S D

(continued from page 28)
3 8 6 Virtual Memory Address Translation Mechanism
The 386 paging mechanism impacts the 386BSD specifica­
tion with respect to address space allocation constants: Each
page is 4K byte in size and must reflect the minimum
granularity of address space allocation, while each page of
page tables maps 4 Mbyte of address space. These constants
determine address boundaries used to allocate memory and
share address space between similar processes. Shared ob­
jects starting on 4-Mbyte boundaries can share page tables
as well as underlying physical memory.

Page size granularity is important to the layout of execut­
able files. Instruction and data regions are arranged into
discrete and aligned memory page units, so that it is possible
to demand load pages that may be either "read-only" (in­
structions) or "read-write" (data or stack). The page table
size granularity is typically located at the beginning of each
user, user stack, and kernel address space. It is possible to
share these among many processes, obviating the need for
separate page tables. As a result, while each process has its
own page table directory, the top eight PDEs of each pro­
cess page table directory point to the same kernel page
tables. Thus, the kernel's portion of address space is global
to all other processes.

User to Kernel Communication Primitives
By arranging our address space as outlined, we've greatly
simplified the routines that communicate between kernel
and user process (now the kernel routines can directly
access user space). All that is needed is a way to determine
if a selected portion of user memory may be read or written
before it is attempted. On some machines (such as the VAX)
special instructions are available for this purpose. The 386,
however, offers instructions only for use in validating seg­
ments, not pages. So we must use a different strategy.

In 386BSD, we chose to set a global variable inofauli) to
a nonzero value. If a fault happens during any user/kernel
communication primitive, it transfers to the address held
within no fault. In this way we can catch illegal references
by using the microprocessor's own address translation mecha­
nism to find them, instead of by tedious code evaluation
on every reference.

Unfortunately, one idiosyncrasy of the 386 now rears its
ugly head. The designers of the 386 decided that segment
attributes should be used to ultimately determine access to
regions in a process, thus making their use mandatory in the
system even if we don't need them. To be precise, we have
page attribute bits that can be used for protection. These
work as expected, unless the 386 is run in supervisor mode
(as does the kernel). In this case, only the valid/invalid
attribute has any effect. This nuisance or "feature" requires
a bit of workaround to make the primitives complete.

Berkeley UNIX Virtual Memory System Strategy
The current Berkeley UNIX virtual memory management
subsystem was originally designed for use with a VAX, and
as such has no support for page directories. For that matter,
the 386 doesn't know of such VAX concepts as PO and PI
address spaces for instruction/data and stack nor of page
table-length registers. Currently, these are simulated in 386BSD.
However, work is underway to revise the entire virtual
memory system to permit more generalized operation over
all supported Berkeley UNIX platforms, now that the de­
mands of each platform have been made obvious.

Portions of the VAX were simulated by employing code,
written by Mike Hibler at the University of Utah, which
supports the 68030 paging memory management. Because
the 386 code is so similar, we used a conditional compila-

Dr. Dobb'sJournal, January 1991

Ffetzold
on Windows 3

; p * o

C h
a r i

7/l(
•<rt,,>

z o i

'"''**n,

f -; . ,r .

• < • . $

i I

I • h

: / • ' • * ?
?l

i; /*

The classic guide to programming for Microsoft® Windows is now updated to address Microsoft Windows

version 3.0. Whether you're looking at Windows programming for the first time or converting your existing

applications to take advantage of Windows 3, Charles Petzold provides the overview information and hands-

on detail that you need. Accept no substitutes. Ask for PROGRAMMING WINDOWS, Second Edition, by

Charles Petzold at your local bookstore or order directly from Microsoft Press. $29.95,

To place your credit card order, call

1-800-MSPRESS.
Please refer to campaign AH.

Microsoft Press
One Microsoft Way

Redmond, WA 98052-6399

Microsoft
•¥ R E I S

An
Authorized

Edition
CIRCLE NO. 165 ON READER SERVICE CARD

386 BSD

(continued from page 30)
tion that shares 68030 and 386 versions interchangeably —
an odd couple indeed.

Structure of Per-Process Data (u.)
Within each process accessed by the kernel exists a unique
data structure containing the private variables of the process
used to provide UNIX system call functionality. This is called
the "extended state" of a given process and is collected into
one location. If the process is long inactive, this state is
swapped to secondary storage to reclaim RAM memory. All
of the machine-dependent fields in this structure lie within
the first element u_J>cb, a process context descriptor. How­
ever, the size of this structure and its adjoining kernel stack

is also a machine-dependent parameter. The u. is currently
defined at about 1 Kbyte in size. This fits amply within a
single page.

Another page is sufficient to hold a kernel stack. This
results in a per-process data structure two pages in size. By
leaving these as two separate pages in 386BSD, instead of
combining them into a single page (giving us a smaller
kernel stack), the kernel stack segment can be used to catch
the stack overflow ("redstack") condition. This will appear
as a future enhancement.

Process Context Description
As seen in Figure 6, the process control block (struct pcb),
contains the 386-specific per-process information. This is

/* Intel 386 process control

struct pcb {

#define
#define
#define
#define
#define
#define

struct
pcb_ksp
pcbjptd
pcb_pc
pcb_psl
pcb_usp
pcb_fp

block

i386tss pcbtss;
pcbtss.tss
pcbtss. tss_
pcbtss. tss_
pcbtss.tss
pcbtss. tss_
pcbtss. tss_

/* Software pcb (extension)

Idefine
#define

};

/* Intel

int pcb fpsav;

espO
cr3
eip

*/

eflags
esp
ebp

*/

FP NEEDSAVE Oxl
FP_NEEDRESTORE 0x2
struct
struct
struct
int
int
int
int
int
long
int

386 Task
struct i386tss {

#define

#define

#define

#define

tdefine

#define

};

long
long
tss ksp
long
long
long
long
long
long
tss_ptd
long
tss_pc
long
tssjpsl
long
long
long
long
long
tss usp
long
tss_fp
long
long
long
long
long
long
long
long
long
long

/* need save on next context switch
/* need restore on next DNA fault *

save87 pcb savefpu;
pte *
pte *
pcbjpOlr;
pcbjpllr;
pcb_szpt;
pcb cmap2;
*pcb sswap
pcb sigc[8
pcb iml;

pcbjpObr;
pcbjplbr;

;

Switch State */

tss link;
tss_espO;
tss_esp0
tss_ssO;
tss espl;
tss ssl;
tss esp2;
tss_ss2;
tss_cr3;
tss_cr3
tss eip;
tss_eip
tss eflags
tss_eflags
tss eax;
tss ecx;
tss edx;
tss ebx;
tss_esp;
tss esp
tss ebp;
tss ebp
tss_esi;
tss_edi;
tss es;
tss_cs;
tssjss;
tss ds;
tss fs;
tss gs;
tss_ldt;
tss_ioopt;

/*
/*

/*
/*
/*
/*
/*
/*

/*

; /*

/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

*/
/

/* number of pages of user page table */

/* sigcode actually 19 bytes */
/* interrupt mask level */

actually 16 bits: top 16 bits must be
kernel stack pointer priviledge level

actually 16 bits: top 16 bits must be
kernel stack pointer priviledge level
actually 16 bits: top 16 bits must be
kernel stack pointer priviledge level
actually 16 bits: top 16 bits must be
page table directory physical address

program counter */

program status longword */

user stack pointer */

user frame pointer */

actually 16 bits: top 16 bits must be
actually 16 bits: top 16 bits must be
actually 16 bits: top 16 bits must be
actually 16 bits: top 16 bits must be
actually 16 bits: top 16 bits must be
actually 16 bits: top 16 bits must be
actually 16 bits: top 16 bits must be
options & io offset bitmap: currently

zero
0 */

zero

1 V
zero
2 */
zero

*/

zero
zero
zero
zero
zero
zero
zero
zero

XXX unimplemented .. i/o permission bitmap

V

V

*/

*/

V
*/
*/
*/
*/
*/
V
V
*/

Figure 6: Process control block

32 Dr. Dobb's Journal, January 1991

Start With Results.
Win The CASE Race

The CASE race is on, and victory goes to swift
results. A CASE product must not be more
difficult to use than the problems it solves. In

today's development environment nobody has the time to
learn CASE. With POSE you purchase and learn modules in
the same sequence as solving your system design problem,
so you learn and produce results simultaneously.

Start with as much or as little as you need. The POSE
DOS-based product line will be with you all the way from
entry level explorations to full
AD/Cycle compliance.

READY to solve problems.

Our modular design allows you to
buy and use CASE as you need it.
You might start with Data Model­
ing, then add Process Modeling,
Screen Prototyping, Planning
Matrix, and finally Cobol code
generation. POSE, generates DB2,
SQL/DS, ORACLE, FOCUS,
AS/400, and AD ABAS schemas.

SET the pace for fast action.

Thorough documentation and a graphical user interface make
intuitive CASE a reality. Choose from Yourdon, Gane/
Sarson, or a variety of other methodologies. There is no
better way to learn CASE than to use CASE.

Deciding that you need CASE is easy. Getting it into your
organization without causing a revolution is something
different. POSE's low cost and broad product line make it a

natural for convincing skeptics. Our
30-day money-back guarantee
insures a risk-free decision.

1-800-537-4262 fa

! CQIpllf ER SYSTEMS ADVISERS, IlStC.

Is: • 50 fice Boulevard m-m

(201) 3*1-6500 (800) 537.4211
All trademarks are owned by their respective companies.

GO for the three E's.

Easy to learn. Easy to use. Easy to
justify. Find out how POSE can
make the three E's work for you.
Call today and ask about free
demo's and our risk-free money-
back guarantee.

1-800-537-4262
>

©1991 CSA, Inc. CIRCLE NO. 413 ON READER SERVICE CARD

3 8 6 B S D

(continued from page 32)
broken down into hardware-dependent fields and software-
related fields. The process control block is placed at the
front of the user structure so that the information can be
reloaded from the address of the user structure and force

It is quite costly to implement segments

in the microprocessor. That is why

underlying shadow registers, invisible

to the programmer, are used. They

provide a hardware "assist" to the

segmentation functionality

active a previously inactive process. The user structure
address is recorded in the process table. Each entry de­
scribes global information about a process.

The 386's hardware context switch facility can be used to
switch from process to process. By placing the hardware-
dependent information at the beginning of the process
control block, in the form of the 386's Task Switch State
(TSS) data structure, it is possible to switch from one process
to another with a single intersegment Ijmp instruction to the
appropriate task gate selector. While this feature has been

implemented in 386BSD, it is not used at this time for
switching between processes due to performance consid­
erations. However, it can be used in other cases, such as
exception handling, and we may elect to use it for process
switching in the future. We view this as one of those ime
"have your cake and eat it too" decisions.

In 386BSD, not all hardware context is switched in this
manner, because some processes never access the large
amount of state information (108 bytes) used by the numeric
coprocessor. We allow for this with the pcb_Jpusav struc­
ture. Other fields correspond to some implementation de­
mands specific to Berkeley UNIX, including simulating VAX
hardware constructs invoked by the virtual memory system
not existing on the 386. Fortunately, this was a small amount
of code. It is a tribute to the concept of UNIX that the
machine-dependent portion of the system is as small as it is.

Page Fault and Segmentation Fault Mechanism
To report exceptions that occur in the 386 memory manage­
ment hardware, they must be caught and routed to the
proper portion of the kernel. UNIX places these exceptions
in two categories: Faults signaled to the user process, which
terminates the process if it is not interested in the exception,
and "resource not present" faults sent to the virtual memory
system to request a missing page.

The 386 also signals a variety of segment exceptions,
almost all of which result in dire consequences for the
process that invokes them. A single page fault exception
encodes both "page not present" as well as "protection
violation" events. These page faults, along with the fault
address, are recorded in processor special register cr2 and
should be carefully examined to determine the precise
nature of each exception.

CASE WORLD
March 5-7,1991
Los Angeles Convention Center

Featuring: Call (508) 470-3880 For Com-
• Ed Youdon, Conference plete Information On:

Chairman
• Over 50 Leading CASE

Experts
• Over 100 CASE Soft-
" ware Developers
• 8 Concurrent Technical

Tracks

^ ^ ^ • 1 D ' 9 ' t a ' Consult ingf Inc.
^ ^ CIRCLE NO. 70 ON READER

CASE WORLD Confer
ence Program
Free Subscription
to CASE World
News & Digest
Case User's
Network
Exhibiting at CASE
WORLD

CIRCLE NO. 70 ON READER SERVICE CARD

THE

DEFINITIVE

^ CASE

^ ^ EVENT!

34 Dr. Dobb'sJournal, January 1991

Death
Taxes

Software Piracy

We can save you from one of them.

S
orry. Death we can't do anything about. As for
taxes, when you use our product you'll probably
wind up paying more. But software piracy:
there we offer some help. Our family of software

protection devices (dongles) have improved unit sales
for over 2,000 companies around the world.
Our products can be used in the MS-DOS,
OS/2 and Macintosh environments.

Bui ld Your Own Custom Protect ion
Environment

Use our patented "dual-
locking" ASIC chip as the
basic building platform.
Next, add options like: on-
the-fly read/write memory,
write-once or multiple-write
locking codes, and encryp­
tion shells. Then add your

Software Security

9%

own programming creativity to build a protection envi­
ronment best suited to your product.

Users attach the device to their parallel port, and
programs won't run without it. Back-up copies, hard

disk and LAN operation are not interfered with.

Your Intel lectual Property Be longs To
You

And if you don't protect it, who will? Our
products offer the most equitable way to

protect your interests with­
out sacrificing the rights of
your customers . Call us
today for information and
demonstration units.

1011 High Ridge Road - Stamford, CT 06905
1-800-333-0407 ext. 102

203-329-8870 Fax 203-329-7428 BBS 203-329-7253
AppleLinktm D2379

Macintosh is a trade mark of Apple Computer Inc.,
Activator, Mactivator are trade marks of Software

Security, Inc. illustration: detail from
Michelangelo's Last Judgement

CIRCLE NO. 423 ON READER SERVICE CARD

C/C++ Windows 3.0
Screen Designer Code Generator

only $99

EL
Screen Deslaner and Code Generator

lor Microsoft Windows 3.0
3-in 1 Prototyper

Company |GUI Comouter Inc. |

Address 6604 Femshaw Dr. I

City, St Zip |Dallas j [Texas I 175248 1

H Increase Productivity

3 Reduce Cost

<S> Object-Oriented
O Structured

" ™ ™ ™ » i ^ ^ ^ ^

MS Window C++ version __
X Window C version 1
MAC C version \T\

m | | Cancel |

The C/C++ source code for this Microsoft
Windows 3.0 screen was created in

20 Minutes!!
• Easy Layout
• Quick Screen Result
• Object-Oriented Design

• One-Step Compiling
• Windows Programming
• No Source Code Royalties

GUI 3-in-l Prototyper
SPECIAL OFFER : C$99, C++$159, Both $199

214-250-3472 FAX 214-250-1355

3 8 6 B S D

CIRCLE NO. 482 ON READER SERVICE CARD

PCYACC
Version 3.0

^FTWARE, lNc

PROFESSIONAL
LANGUAGE DEVELOPMENT
TOOLKIT
Includes "Drop In"Language
Engines for SQL, dBASE,
POSTSCRIPT, HYPERTALK,
SMALLTALK-80, C+ +, C, PASCAL,
PROLOG, FORTRAN, COBOL,
AND ADA.

PCYACC Version 3.0 is a complete Language Development Environment that
generates ANSI C source code from input Language Description Grammars
for building Assemblers, Compilers, Interpreters, Browsers, Page Description
Languages, Language Translators, Syntax Directed Editors, Language
Validators, Natural Language Processors, Expert System Shells, and Query
languages.
Complete Grammars, Lexical Analyzers, and Symbol Table Management
for ANSI C, K&R C, ISO Pascal, FORTRAN, dBASE Ill/Plus and IV, SQL,
C++ (1.0 & 2.0), Smalltaik-80, APPLE HyperTalk, C&M Prolog, YACC, LEX,
FORTRAN-77, COBOL, ADA, VHDL, and POSTSCRIPT are included. DOS,
OS/2, QNX, SCO, AIX, SUN, and Macintosh versions are available.
• NEW! 32 BIT Ex tended Memory Suppor t for DOS 386, wi l l

comp i l e any g rammar !
• NEW! Bu i ld sys tems w i th fu l l ERROR HANDLING, RECOVERY,

AND REPORTING.
• Quick Syntax analysis option • Lexical Analyzer generator
• Optional Abstract Syntax Tree ABRAXAS PCLEX is included
• Manual "Compiler Construction • Fully compatible with UNIX

with PC'S" included YACC grammars
DOS Professional Version $495. • Macintosh $495.

OS/2$695.'UNIX$995.
30 day Money back guarantee! Free AIR Shipping anywhere in the world!

*

ABRAXAS
Softwarejnc.
7033 SW Macadam Ave., Portland, Oregon 97219 USA
TEL (503) 244-5253 • FAX (503) 244-8375 AppleLink D2205

(continued from page 34)
Other Processor Faults
Along with address space faults, we found we must map 15
other faults (see Figure 7) into the Berkeley UNIX kernel
exception-handling mechanisms. The numeric coprocessor
presents special fault-handling challenges, for it can be
operating when 386BSD switches to another unrelated pro­
cess. In that case, we can get a trap that should have been
passed to a process other than the one currently running.

If 386BSD receives an unexpected fault while running in
the kernel, it must immediately force the kernel down (in

We found a hornet's nest
of microprocessor

idiosyncrasies unique to a
386 UNIX port

CIRCLE NO. 75 ON READER SERVICE CARD

UNIX vernacular, to "panic") and attempt to save as much
state information as possible for diagnostic purposes. Thus,
we differentiated user traps from kernel traps. In most other
microprocessors, a bit in the processor flags or status word
determines if we are running in the kernel, but the 386 offers
no such bit. So, 386BSD examines the contents of the CS
segment register when a trap occurs (this is saved by the
hardware during an exception) to determine if an instruc­
tion was executing in user mode.

Microprocessor Idiosyncrasies
We found a hornet's nest of microprocessor idiosyncrasies
unique to a 386 UNIX port. Some of the primary issues these
touched upon included that of switching from real mode
(20-bit addressing) to protected mode (32-bit addressing),
creating segment descriptors to fill the interrupt descriptor
table, creating other segments for use by the user and kernel
modes of a process, and finally, novel surprises between
different steppings of the 386/486 themselves.

One major irritant was the need for at least one TSS
structure to be present at any time, even if we didn't use a
TSS for task switching. The TSS records the contents of the
kernel's stack pointer for use when the kernel is reentered
from user mode (interrupt, exception, and system call). Our
early versions of 386BSD worked well as it started up within
the kernel, moved into user mode for the first process, and
then froze after hitting the first system call. Imagine our
surprise when we found that, in effect, it had no place to
save where it was coming from on the kernel stack!

System Call Interface
A table of system calls is provided by Berkeley UNIX with
the assigned index number that differentiates them. This
table specifies, in part, a binary standard for system calls —
in this case, of a POSEK-based system. Of course, because
POSIX is considered an "object library" definition (as op­
posed to the regulation at the system call level desired by
ABI and BCS advocates), one might accurately consider this
an "academic" standard. In deference to these other stan­
dards, however, we chose to accept their suggested format
for system calls.

Figure 8 is a code template for the system call stub used
in 386BSD, in this case a write system call. The Icall instruc-

Dr. Dobb's Journal, January 1991

Fill your
windows
with images..,

Despite the billions of dollars

spent on computers, networks

and software to automate

business functions, studies

have shown that only 5%

of all the information needed

is available online.

Wang OPEN/image Developer

Kits give you tools to easily

add imaging to your

Microsoft® Window applica­

tions. Wang OPEN/image

Windows are invoked within

MS Windows as a set of

Dynamic Link Libraries (DLLs)

allowing your applications to

capture, scan, view, edit,

index, store, print or distribute

images without requiring any

special hardware.

For more information about

Wang's OPEN/image

Developers Kit, call

800-TEL-WANG.

WANG

Microsoft is a registered trademark of

the Microsoft Corporation. OPEN/image Windows
CIRCLE NO. 531 ON READER SERVICE CARD

3 8 6 B S D

(continued from page 36)
tion is an intersegmental call instruction that references a
special segment selector, known to be a UNIX system call
gate into the kernel. The selector corresponds to the first
descriptor in the processes local descriptor table. To desig­
nate which system call is to be used, the eax register is
loaded with the index from the table. Arguments for each
system call are present on the stack, and this stub is called
from another procedure. System calls return after the Icall
instruction, returning values in the eax and edx registers
(just as other C procedures do). System calls report failure by
setting the carry bit and recording error notification in eax.

System Specific (ISA) Issues
So far, we have only described issues relating to our choice
of microprocessor. But this specification is incomplete un­
less the issues relating to the bus and the system surround­
ing the microprocessor are examined. We recognized that
the 386 already operates on a plethora of different buses,
including ISA, EISA, MCA, VME, and MULTIBUS, and that
these issues vary depending on which bus is used. We may
even need to support more than one bus at a time, or even
a custom bus. As such, we decided that 386BSD must take
into consideration the support requirements of many differ­
ent bus standards.

Exception

Divide
Debug/Trace
Breakpoint
Overflow
Bounds Check
Illegal Instruction
NPX DNA
Double Fault
NPX Operand
Invalid TSS
Segment Not Present
Stack Segment
General Protection
Page
NPX Error

386 Processor Exceptions

Description

Divison by 0 or division overflow
Single step or debug hardware condition
Executed an INT3 instruction
Executed an INTO instruction when OF bit set
Executed an BOUND instruction which failed
Executed an unknown instruction
Numeric processor device not available
Recursive fault (fault while processing a fault)
Numeric processor accessed outside of segment
Attempted to task switch to incorrect task state
Attempt to access a not present descriptor
Problem with current stack descriptor
Protection problem with a segment descriptor
Page missing or protection problem with address
Numeric processor signals an error

Pushes an Error Code?

No
No
No
No
No
No
No
Yes
No
Yes
Yes
Yes '
Yes
Yes
No

Figure 7: 386processor exceptions that needed to be mapped into the kernel exception-handling mechanism

DigiBoard takes the squeeze out of
squeezing 4 to 64 users into a single slot.

I®®

GSA Schduk- #(SOOKc)0AGS5138
< 1£X) Dip International. Int. ^4

Physical Memory Map
The ISA bus physical memory layout is outlined in Figure
9. The memory is broken into three parts: base memory, I/O
device memory, and extended memory. RAM is split up on
this standard, with a base memory section, holding up to
640 Kbyte of memory, starting at address 0 and ending at the
beginning of device memory. Remaining memory is located
starting at address 0x100000 (above 1 Mbyte) and extending
to as much as OxFFFFFF (16 Mbytes).

Between the base and extended RAM regions lies device
memory, where display adapter cards and LAN cards use
special RAM buffers. This region, called the "hole," is a
nuisance for UNIX ports, because we would rather see
contiguous memory. Although we do have a means of
making memory appear contiguous through the use of
virtual memory, this does us no good when we must work
with physical memory addresses during system bootstrap,
hardware DMA devices, and physical memory allocation
structures.

#include <syscall.h>

globl

#aratwritten =

write:

1:

lea
lcall
jb
ret

movl
movl
ret

write, _errno

write(fildes, address

SYS write,%eax
$0x7,0
If

%eax, errno
$-l,%eax

count);

caller places arguments on stack
select desired system call
call the system
if system returns error, handle
otherwise return

save error in global variable
indicate error has occured
and return

Figure 8: Code template for the system call stub

If extended memory is not available, we must temporarily
reside in the MS-DOS 640-Kbyte base-memory dungeon.
This is truly hell for memory-consumptive UNIX systems.
Fortunately, this occurs only when the system is "misconfig-
ured" during the configuration or boot processes, and is not
a "normal" situation.

ISA Device Controllers
To support common ISA devices, 386BSD must cope with
a separate I/O address bus, shared memory, vectored inter-

Physical Memory Address

0x100000

0X0A0000

0x000000

Extended
Memory

Device
Memory

Base
Memory I

Figure 9: ISA physical memory map

The more users you try to squeeze into an expansion
slot, the more you can find yourself squeezed for perfor­
mance, reliability and technical support. Unless you specify
DigiBoard connectivity products.

Our DigiCHANNEL series of multiuser commu­
nication products set the standard for high data throughput
and low host CPU overhead. Our reliability is the best in the
industry. And our technical support is so good, even our
competitors' customers have called us for help.

Best of all, DigiCHANNEL products are compatible
with every major multiuser operating system, from AK
to XENIX. And every major hardware platform — ISA,
Micro Channel, EISA and NuBus.

So call for our full line brochure, plus details about
our 30 Day No Risk Trial Offer. And start squeezing more
connectivity out of every single expansion slot

Digi!
^Connectivity Solutions from Digi International

6751 Oxford Street, Minneapolis, Minnesota 55426
800-344-4273,612-922-8055, FAX 612-922-4287

CIRCLE NO. 376 ON READER SERVICE CARD

Conversion Tools
for Fortran Programmers

• FOR-STRUCT
Transforms spaghetti FORTRAN into fully structured
code, with or without VAX and FORTRAN-90
extensions! GOTO and IF-GOTOs are replaced with
IF-THEN-ELSE, DO-WHILE and DO-ENDDOs, while
retaining programming logic. Code is not duplicated,
dead segments can be removed and different style
options are offered. Fully compatible with FOR_C++.

• FOR-C++™
Converts standard FORTRAN and many VAX
extensions (e.g. structures) into C++ and C!
Produces extremely readable and maintainable C
code, with excellent I/O and character translations.
Utilizes a C-style preprocessor and C++/C proto­
types, and includes source to extensive runtime
libraries for full code portability.

• Call for more information
and combined product discounts!

C O B A L T B L U E
wmmmmmmmmmmm
2940 Union Avenue, Suite C
San Jose, CA 95124, USA
TEL(408) 723-0474,
FAX(408) 377-7648

CIRCLE NO. 107 ON READER SERVICE CARD

CIRCLE NO. 492 ON READER SERVICE CARD

40

3 8 6 B S D

rupts, and dedicated DMA controllers. Since most of these
evolved from ad hoc standards, device conflicts are com­
mon. In order to accurately support ISA, we began with a
minimal AT 386 configuration — 386/387, 1-Mbyte RAM,
keyboard, monitor, Winchester drive (ST506, ESDI, IDE),
and floppy drive — and relied solely on what the BIOS uses
to work the hardware. We expect an improvement in perfor­
mance when these guidelines are eventually relaxed.

ISA Device Auto Configuration
A key advantage of Berkeley UNIX is its ability to configure
at boot time devices present on the system. This feature,
while difficult to implement on the ISA given numerous
conflicts, was considered valuable and was implemented.

In Figure 10(a), we have data structures that encode all
the appropriate information to configure a device in 386BSD.
Each driver, which may have many devices, is able to
locate and configure a device if present. The isa_device
structure also contains the characteristics of each device to
be recognized. If found, hardware resources can then be
assigned to each device as configured. A sample table of
possible devices to search for within the kernel appears in
Figure 10(b).

Interrupt Priority Level Management
In the PC architecture, there is a separate interrupt level per
device interrupt. These are more levels than traditional
UNIX wants or needs. Instead, UNIX groups different classes
of devices into interrupt priority levels that can be disabled
and enabled as a group (disks, terminals, network). This is
done through spl() function calls, named for a PDP-11/45
instruction which implemented this feature on early UNIX
systems. This capability must be provided in 386BSD as well.

Each interrupt vector (interrupt gate) has code that saves
the cpl (current priority level) variable on the stack, sets the
new cpl value, and turns on interrupts above this level. On
return from the interrupt, all vectors call a common routine
that disables interrupts, restores the cpl, and returns with
interrupts enabled. The cpl is altered, as is the priority mask
of the dual 8259 ICUs, by the spl() subroutines. The micro­
processor or system can now be run at different priority
levels on demand.

Bootstrap Operation
One of the last considerations in the development of the
386BSD specification is deciding how we can most easily
bootstrap load the BSD kernel from hard or floppy disk.
We know that ISA machines have BIOS ROMs that select the
device to be booted (typically the floppy first, followed by
the hard disk), load the very first block into RAM at location
0x7c00, and finally execute it in real mode. From this point
on, we had to create some tight code to run within that
512-byte block to read in our kernel from an executable file
in the UNIX file system.

Traditional Berkeley UNIX undergoes a four-step boot­
strap process to load in the kernel. First, the initial block
bootstrap is brought in from disk by the hardware (in this
case, the BIOS). The primary purpose of this assembly
language bootstrap is to load in the second 7.5-Kbyte boot­
strap located immediately after the initial boot on disk. This
larger program, written in C, is much more elaborate in that
it can decipher the UNIX file system, extract the UNIX file
/boot, and load it as the next stage in the bootstrap, /boot,
the most complex of the three bootstraps, evaluates the
boot event and finally passes configuration parameters to
the kernel as it is loading /vmunix, also located in the file
system.

At first we intended to write the initial block bootstrap in

Dr. Dobb'sJournal, January 1991

Look
When

...and There's No Room for Mistakes
A major financial organization needed an automated trading
program. Development was projected at six months; it was
completed in two - with Action!

An aerospace firm was under critical pressure to create a complex,
specialized CAD/CAM package. The smart money said six months.
The quiet guys had it wrapped up in less than two weeks - with
Action!

A large school district needed a better scheduling system.
Designed on the microExplorer, then ported to the Macintosh on
Procyon Common Lisp, the new system is powerful, easy to use,
and it saved the district six million dollars!

A communications giant needed a feasibility prototype to bid a huge
international project. They spent a year trying to develop it. Then,
with Action!, it was finished in two weeks.

The Action! development environment used with

SPOKE, Procyon Common Lisp and the microExplorer

moves computer programming into a vital new

dimension. It's helping corporations solve old problems

that under conventional methods have defied solution.

Call today to learn more about tough problems that have

been solved with the Action! development environment.

The Action! Alliance: a partnership for programming the future.

The Action!
Development System

microExplorer
Lisp machines

^ ^ JT~. i f ;̂ « ^ -^ ̂ ̂

(perTelligence I w
5638 Hoi lister Ave, Suite 302

Goleta, California 93117
Phone (805) 967-1797
FAX (805) 964-8448

CIRCLE NO. 465 ON READER SERVICE CARD

-v
% H H P g ;

SPOKE Object-Oriented
Programming in C and C++

r^-u.

y|i
^ ^

Procyon Common Lisp
with CLOS for Macintosh & IBM

1

3 8 6 B S D

(continued from page 40)
MASM, Microsoft's MS-DOS assembler, and use calls to the
BIOS to accomplish the boot process. This proved to be
unsatisfactory, as it still left us tied to MS-DOS. So, we
decided to use the UNIX protected mode assembler. This
allowed us to "cut the cord" with MS-DOS and permitted the

system alone to support all code. We also chose to create
drivers for the hardware directly, from the initial boot block
on up, to break away from the BIOS as well. As a result,
386BSD can now be easily retargeted to new buses that
might not rely on either MS-DOS or the BIOS.

(continued on page 46)

(a) /* Per device structure. */
isa device

struct
short
short
short
caddr t
int
int
int
int
int

{
isa driver *id dj
id iobase;
id irq;
id drq;
id maddr;
id msize;
(*id intr) ();
id unit;
id scsiid;
id alive;

rive

n
/ • >

h
i
i
i
i
i
i

V

/* Per driver structure. */
struct isa_driver {

int (*probe) ();
int (*attach) ();
char *name;

(b) /* ISA Bus devices */

tinclude "machine/isa/device.h"

; /* per driver configuration info */
Base i/o address register */
Interrupt request */
DMA request */
Physical shared memory address on bus
Size of shared memory */
Interrupt interface routine */
Physical unit number within driver */
SCSI id if SCSI device */

/* Device is present and accounted for */

/* Test whether device is present */
/* Setup driver for a device */
/* Device name */

/* device structure */

/* Software drivers */
#define V(s) V/**/s
extern struct driver wddriver; extern V(wdO)();
extern struct driver cndriver; extern V(cnO)();
extern struct driver comdriver; extern V(comO)();
extern struct driver fddriver; extern V(fdO)();
extern struct driver nedriver; extern V(neO)();

extern V(coml)();

/* Possible hardware devices */
#define C (caddr_t)
struct isa_device isa_devtab_bio[
/* driver iobase irq

] = {

{ &wddriver,
{ &wddriver,
{ &fddriver,
{ &fddriver,
0

IO_WD0, IRQ14,
I0_WD1, IRQ13,
IO_FD0, IRQ6,
I0_FD1, IRQ6,

struct isa_device isa_devtab_tty[]
/* driver iobase irq

drq maddr msiz

-1, C 0, 0,
-1, C 0, 0,
2, C 0, 0,
2, C 0, 0,

{
drq maddr

{ &vgadriver,
{ &cgadriver,
{ Smdadriver,
{ &kbddriver,
{ &cndriver,

{ &comdriver,
{ &comdriver,

IO_VGA,
IO_CGA,
IO_MDA,
I0_KBD,
10 KBD,

0,
0,

IRQ1,
IRQ1,

IO_CQM0,IRQ4,
10 C0M1,IRQ3,

-1,
-1,
-1,
-1,
-1,

-1,
-1,

C OxaOOOO,
C OxaOOOO,
C 0xb8000,
C 0,
C 0,

C 0,
C 0,

intr

V(wd0),
V(wdl),
V(fd0),
V(fdl),

0x10000,
0x4000,
0x4000,
0,
0,

0,
0,

unit */

0},
1},
0},
1},

intr

0,
0,
0,
V(kbd0),
V(cn0),

V(com0),
V(coml),

unit */

0},
0},
0},
0},
0},

0},
1},

struct isa device isa devtab net[] = {
/* driver iobase irq

{ Snedriver, 0x320, IRQ9,
0

struct isa device isa devtab null[]
/* driver iobase irq

drq

-1,

= {
drq

maddr

C 0,

maddr

msiz

0,

msiz

intr

V(ne0),

intr

unit */

0},

unit */

Figure 10: ISA device controllers: (a) data structures for configuring devices (b) sample table of possible devices

42 Dr. Dobb'sfournal, fanuary 1991

We slash interface
development time.

(and we can prove it!)
C-PROGRAMMERS:
See for yourself how

Vermont Views ™
can help you create

user interfaces
the easy way.

If you want to start saving a tre­
mendous amount of time and
effort, call for your free Vermont
Views demo

' ^9MSbe?
kit and put us
to the test.
Vermont Views
is a powerful,
menu - driven
screen design­
er that comes
with a C li- ,iL a,.,..̂ ;v..̂ ,mraKamimm

brary of over
550 functions. Which means you
can create user interfaces in just
a fraction of the time it takes to
write the code yourself!

Why try to reinvent the
wheel when Vermont Views lets
you interactively create pull-down
menus, window-based data-entry
forms (with tickertape and memo
fields), scrollable form regions,
choice lists, context sensitive
help, and a host of other interface
objects.

Vermont Views combines the
convenience of a fourth genera­
tion language with the power,
flexibility, and blinding execution
speed of native C code.

and effort. With Vermont Views,
things are a lot different. In fact,
the prototype actually becomes
the application. So menus and
data-en try forms are usable in the
final application without change.
Names of functions for retrieving,
processing, and storing data
can all be specified as the proto­
type is created. And that 's just
for starters.

Here's a truly
universal solution.
When you create an inter­
face with Vermont Views,
you can port it among
PC-DOS, OS/2, UNIX,
XENIX, and VMS.

Vermont Views can be
used with any database
that has a C-language in­

terface (most do), and will create
interfaces for any roman-based
language. Our form-locking ver­
sion lets you develop quickly and
safely on networks and multi­
user operating systems, too.

If you need DOS graphics in
your applications, we also have
the answer. Vermont Views™
GraphEx allows all Vermont
Views' windows, menus, and
forms to work in CGA, EGA, VGA,
and Hercules graphics modes.
So you can use your
favorite graphics package
to create charts, graphs,
and other images to enhance
text displays.

'#1

WE GUARANTEE
YOUR SATISFACTION.

FOREVER

We're so sure youll
love Vermont Views that
we make this iron-clad,
money-back guarantee. If
you're ever dissatisfied
with Vermont Views, for
any reason, return it for a
prompt, no-questions-
asked refund. (All you
have to do is certify that
you haven't incorporated
our code into any ap­
plication.)

I *

'#
'#
| *

*

I *
i$

*±te *±Je > ^ ^ ^ ^ > ! & ^ > C k s C t f c s«±k *Cfac *Ctk

Call for your FREE
demo kit!

800-848-1248
(Please mention "Offer 087")

Don't take our word for it. Put
Vermont Views to the test by
calling for your personal, free
demonstration kit. Or fax us at
(802) 848-3502.

Turn your prototype
into the application.

Let's face it. With most systems,
you have to throw away your proto­
type when coding begins. Which
means you waste precious time

CIRCLE NO. 529 ON READER SERVICE CARD

HP C++/SoftBench: A software development
environment with an integrated set of program

development and integration platform tools.

HPAxDBDebuggei.-Displays microprocessor
code, stack backtrace, and variables.

Test coverage window shows statements
not executed during test.

C

Interleaf Technical Publishing Software: A
documentatixm software and management system

that features integrated text and graphics

VERIL

Cadre Teamwork: A family of
tools that implement system analysis and

software design methodologies.

BestCA

McCabe Test Tbols: An automated software
testing and reverse engineering application.

Verilog LOGISCOPE:
Automated testing of source

code analysts for reverse
engineering.

Ada: A development environment that
allows real-time symbolic debugging, available

from multiple vendors.

SE scenario.

Softool Corporation CCC:
A complete, automated solution

for change control and
configuration management.

Frame FrameMaker%: Easy-to-use text,
graphics, and layout tools for documentation.

CaseWare* AMPLIFY" CONTROL:
A graphic development environment

and configuration management system based
upon an open architecture.

Apollo DSEE: Offers unequaled
software development support for complex,

team-oriented projects.

,iwJ LKLl hu-d L K J

IDE Software Through Pictures1: Integrated tools
for improving software quality that emphasize

systems analysis and software design.

Your software release dates are
continually postponed. Defects are
discovered late in your development
process. And your team can't find
contemporary solutions to existing
problems.

Hewlett-Packard CASEdge gives you
the competitive edge.

With the HP CASEdge program and
our software suppliers, we offer a

broad selection of development tools
for the software engineering industry.
And a strong commitment to helping
your team find, evaluate, and imple­
ment the right software engineering
tools and best practices for the task
at hand.

HP CASEdge solutions speed the
automation of specification, design,
implementation, debugging, and
maintenance. And decrease devel­

opment costs while getting your
products to market faster.

For your next design project, choose
the vendor with the best CASE
scenario. Call HP today at 1-800-
752-0900, Ext. 1721.

HEWLETT
PACKARD

CIRCLE NO. 513 ON READER SERVICE CARD

3 8 6 B S D

Graf Print™
TurboC MicrosoftC WATCOMC ZortechC i

Printer Graphics Libraries
Add high resolution printer graphics output to your programs
using our linkable libraries -NOT a screen dump! Develop
programs using the host compiler's graphics functions. Graf Print
transparently intercepts your commands and draws to the screen
and printer simultaneously. Obtain printouts interactively from
within your program or save as a vector file for printing later,

Graf Print Personal $75
Full support for host compiler's graphics library, Printer support
includes HP LaserJet, DeskJet, PaintJet, Epson FX/LQ printers,
and PC Paintbrush .PCX files. Personal Use Only!

Graf Print Plus $150
Adds Postscript support and integer and floating point viewports
to screen and printer graphics. Develop for one yidep mode,
GrafPrint Plus automatically scales between video modes. Map
multiple screens to any region on a page for special effects,
Provides true device independence! Personal Use Only!

GrafPrint Developers $300
Provides the features of GrafPrint Plus, includes a royalty
free distribution license and free upgrades for one year.

AnSoft, Inc, 361-470-2335
8254 Stone Trail Court, Laurel, MD 20723 USA

CIRCLE NO. 487 ON READER SERVICE CARD

Master of
Software
Engineering

Carnegie
Mellon
University

Reply MSE Admissions Coordinator
to CMU/SEI

Dept. B . ' • . ' • . .
Pittsburgh, PA 15203-3890

(412)268^7713

CIRCLE NO. 517 ON READER SERVICE CARD

(continued from page 42)
Both the second and third bootstraps are actually separate

incarnations of the same source code (drivers and all). The
only difference is that the second bootstrap is a functional
subset of the third bootstrap, so that it could fit within the
small confines required. All of the bootstraps reference a
special data structure called the disklabel that knows the
layout and geometry of the disk drive booted. In this way
thousands of different disk drives can be supported inde­
pendent of MS-DOS and the BIOS information.

Summary: Where is 386BSD Now?
Perhaps the discussion of some of these issues might have
seemed difficult or incomplete, but we found each item to
be of tremendous importance in understanding the practice
of a port to the 386 architecture. Unlike Berkeley UNIX ports
to other systems, we found that we had to bend over
backwards dealing with segments, memory issues, device
issues, and a plethora of unique microprocessor features.
Now, one may ask, was it all worth it?

Well, BSD is now available on the 386 platform. Even
though it is only a preliminary release, we already support
the following:

• Many different PC platforms, including the Compaq 386/
20, Compaq Systempro 386, any 386 with the Chips and
Technologies chipset, any 486 with the OPTI chipset,
Toshiba 3100SX, and more.

• ESDI, IDE, and ST-506 drives
• 3-1/2 inch and 5-1/4 inch floppy drives
• Novell NE2000 and Western Digital Ethernet controller

boards
• EGA, VGA, CGA, and MDA monitors
• 287/387 floating point, including the Cyrix EMC
• A single-floppy standalone UNIX system, containing sup­

port for modems, Ethernet, SLIP, and Kermit to facilitate
downloading of 386BSD to any PC over the INTERNET
network.

Those of you who can meet University of California
requirements should obtain a copy of 386BSD from the
University of California, so that you can follow along your­
self as we work through the basics of this port from every
angle.

In addition, we would like to thank some of the people
who have helped make 386BSD a reality, including Mike
Karels, Keith Bostic, and Kirk McKusick of CSRG, Dixon
Dick and all the support engineers at Compaq, Fred Dunlap
and Bob McGhee of Cyrix, Don Ahn (UCB), Tim L. Tucker
(Evans and Sutherland), and Clem Cole (Cole Computer
Consulting).

Suggested Readings
1. Leffler, Samuel J., Marshall Kirk McKusick, Michael J.
Karels, and John S. Quarterman. The Design and Implemen­
tation ofthe43BSD UNIX Operating System. Reading, Mass.:
Addison-Wesley, 1989.

2. Crawford, John H., and Patrick P. Gelsinger. Program­
ming the 80386. Alameda, Calif.: Sybex, 1987.

3. IBM Technical Reference: Personal Computer AT. Boca
Rotan, Fla.: IBM, 1984.

DDJ

46

Vote for your favorite feature/article.
Circle Reader Service No. 1.

Dr. Dobb'sfournal, fanuary 1991

