
HOWTO for Powersave ADNP/1520
=============================

1. Why need Powersave and how it works?
2. How can bring CPU in the HALT state?
2.1. How can modify my sources to save the power wi th HALT?
2.2. Example for a Event-Waiting-Loop as C-Source
2.3. How can wait with better power save (delay-fun ction)?
2.4. Example for a Delay-Loop as C-Source
3. Have no sources, or can not modify it. How can install a driver?
3.1. KEY_IDLE.COM - Goes into idle in the waiting f or keys
3.2. I28_IDLE.COM - Goes into idle from INT 28H DOS idle call
3.3. CPU100.COM - Set CPU speed to 100 MHz
4. FAQ

1. Why need Powersave and how it works?
=======================================
DOS-Applications stays mostly in an idle loop and w aits for keys or other
events. The CPU can go into HALT-state to save the power. In HALT-State
mostly of internally clocks are still halted. The CPU leave the HALT from
any hardware interrupts, for sample Timer (IRQ0), s erial input (IRQ4) or
keyboard (IRQ3 for TRM series), LAN (IRQ5 or IRQ7), or all the others that
are enabled.

Without save power by software the CPU needs cooler s, head pipe or head sink.

Summary:
The CPU must not wait with full speed. Lets sleep it in HALT and wakeup on
every interrupt event.

2. How can bring CPU in the HALT state?
=======================================
Add a Assembler function "hlt" in the inner loop of all your waits.
Install a TSR that does bring CPU in HALT, if your application BIOS calls for
"waiting key".

2.1. How can modify my sources to save the power with HALT?
=== ========
Typically you have such abstracted Program-Loop whe re you waits for events:

Loop:
 if key_pressed
 then
 Call Key_handler
 endif

 if LAN_messsage_received
 then
 Call Do_any_with_LAN
 endif
Goto Loop

Change this by adding the HALT command:
Loop:
 Set Idle_flag = TRUE

 if key_pressed
 then
 Call Key_handler
 Set Idle_flag = FALSE
 endif

 if LAN_messsage_received
 then
 Call Do_any_with_LAN
 Set Idle_flag = FALSE
 endif

 if Idle_flag
 then
 asm "hlt"
 endif
Goto Loop

2.2. Example for a Event-Waiting-Loop as C-Source
===
while (1) {
 int idle = 1; // Assume, we are idle

 if (_bios_keybrd(1)) { // Any Key Pressed?
 int key = _bios_keybrd(0); // Read the key from D OS
 HandleMyKey(key); // call a function to do someth ing
 idle = 0; // Don't HALT in this Loop
 }

 if (Lan_Packet_ready()) { // Check the LAN
 HandleMyLANPacket(); // Handle the LAN message
 idle = 0; // Don't HALT in this Loop
 }

 if (idle) { // Are we idle?
 asm {
 hlt // Yes: HALT now and waiting for IRQ
 }
 }
}

2.3. How can wait with better power save (delay-function)?
=== ==

Abstract programming sequence for a power saved del ay loop:

MyDelay:
 set EndTime = CurrentTime + TimeDiff
DelayLoop:
 if CurrentTime >= EndTime
 then
 exit
 endif

 Asm "hlt"
Goto DelayLoop

2.4. Example for a Delay-Loop as C-Source
===
void MyDelay (int milliseconds)
{
 long end, current;

 current = _bios_timeofday(); // Get current time
 end = current + milliseconds / 54; // Setup exit c ondition

 while (current < end) { // exited the exit time?
 asm {
 "hlt" // Wait for Timer and other IRQs
 }

 current = _bios_timeofday(); // Get current time
 };
}

3. Have no sources, or can not modify it. Can install a driver?
=== =============

3.1. KEY_IDLE.COM - Goes into idle in the waiting for keys
=== =======
This driver is the best, to save mostly of power. This driver goes into HLT,
if no keys are in keybuffer and a user application calls the INT 16H/AH=00h
or AH=10h (read key). The driver goes also into HA LT, if DOS calls the
Idle-Interrupt 28H longer than 200ms. The HALT wil l be leave from any
hardware interrupts. It's reenter the idle state, if only the timer (IRQ0)
was the wakeup. For other wakeup events, the idle state enters again after
a time of round about 200ms.

The first call of KEY_IDLE.COM installs it as TSR. The TSR can uninstall
with a second call or force it with "KEY_IDLE.COM / U".

This driver must use, if applications calls the BIO S-Function 16H/AH=00h or
16H/AH=10h. This driver is usable with application s, that calls kbhit and
getch.

3.2. I28_IDLE.COM - Goes into idle from INT 28H DOS idle call
=== ==========
This driver goes into HALT, if DOS calls the Idle-I nterrupt 28H. This is
typically for C-Function kbhit and getch and the DO S-Prompt self.

The first call of I28_IDLE.COM installs it as TSR. The TSR can uninstall
with a second call or force it with "I28_IDLE.COM / U".

This driver can use, if applications calls with kbh it and getch.
It's not usable for applications, that calls BIOS I NT 16H for getting keys.

3.3. CPU100.COM - Set CPU speed to 100 MHz
==
This is not a real power save. It sets the CPU clo ck to 100 MHz.
The CPU needs a cooler under DOS, if you don't use HALT in your application.

4. FAQ
======
1.) Why need Powersave?
The CPU works as an embedded system. If you put it into a case must doing
something to save the totally power consumption. O r must build in a heat
dissipation. With a software power-save, you can u se the CPU in a case
without coolers.

2.) Have no interrupts in my waiting loop. Can I call asm "hlt"?
Yes. In every case, you are idle, you can call the asm "hlt". Your
application will wakeup by timer interrupt every 54 ms. This should be good
for low power idle waits.

3.) What is the difference between kbhit/getch/bios_keybrd?
kbhit and getch are DOS functions. DOS will call I NT 28h, if no key is in
buffer. If you use these functions, the I28_IDLE.C OM will do enough for
saving power.
bios_keybrd is a call software interrupt 16h. The subfunction AH=01h is a
"check key ready", the subfunction AH=00h is going into "wait for key". The
KEY_IDLE.COM detects the function "wait for key" (A H=00h, or AH=10h) and goes
into HALT, if no key is in buffer.
Warning: The TSR can not save power, if an applicat ions is calling only
INT 16h/AH=01h (check key ready).

4.) What is the best way?
You should know your application and insert an asm- instruction "hlt" in your
loop for idle state.
If you don't know your software internals, or can n ot change it, try the
KEY_IDLE and than I28_IDLE.

5.) Are some negative side effects known?
Some software is running slower, if they calls to o ften the kbhit (more
as ones per loop). Try to use the KEY_IDLE.COM, th is goes only into HALT,
if no keys are in the keyboard buffer.
With networking you have an other problem: Broadcas t will wakeup from idle
state. After a networking packet the TRS leave the idle state and goes into
idle only after a delay of some millisecond.
You will have no negative effects, if your applicat ion use the asm "hlt"
in waiting loops and you not use the TSR.

6.) How can check the working?
Check the input current for the system. If power s ave is working you
will see typically 60% of normal power consumption.

7.) Power save is no working in delays?
That's true. Standard delay functions are simple m ultiple loops in loops.
You CPU is waiting for nothing with full speed. Re write it with a time
based loop and call an asm "hlt" or kbhit in the in ner loop.

