Understanding a
Simple Operating System

SOS is a Simple Operating System designed for the 32-bit x86 architecture. Its purpose is to understand
basic concepts of operating system design. These notes are meant to help you recall the class discussions.
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Registers in the 1A-32 x86 Architecture

As an operating system designer, we must be aware of the registers available in the CPU. The I1A-32 x86
architecture first appeared with the 80386 processors. A CPU that complies with this architecture contains
the following set of registers.

1. General purpose registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP and ESP, all 32 bits (4 bytes) in size.
Out of these, ESP is used to point to the current location of the stack (within the SS segment).

2. Segment registers: CS, DS, SS, ES, FS and GS, all 16 bits in size. These registers are used in
protected mode addressing, which assumes that memory is divided into segments. The CS (code
segment) register is used to refer to the segment that contains executable code. The SS (stack
segment) register is used to refer to the segment that contains the stack.

3. Instruction pointer: EIP, 32 bits in size. In protected mode, the CPU uses this register, in
conjunction with the CS register, to determine the location of the next instruction to execute.

4. Program status register: EFLAGS, 32 bits in size. The bits of this register indicate different
status/control states of the CPU.

These are the basic registers available for program execution. In addition, multiple other registers exist to
control and monitor various operations of the CPU. For example, control registers CRO, CR1, CR2, CR3 and
CR4 determine the operating mode of the CPU. Memory management registers GDTR, IDTR, LDTR and
the Task register hold memory locations of data structures necessary for protected mode operation.
Chapter 3, Vol. 1 of the Intel Developer Manual has more details on these and other register sets.

BIOS (Basic Input/Ouput System) Routines

Basic input/output services are provided by the BIOS at startup. In order to use such a service, we will
have to know the service type (given by a number, and also called a BIOS interrupt number) and a service
number. All of these are standardized. For example, BIOS interrupt number 0x10 refers to services related
to the display, and the service number OxOE within this type refers to the service that allows printing
characters on the display. When using BIOS services, the service number has to be loaded in the AH
register, and the service is invoked by using the INT instruction with the BIOS interrupt number as the
operand.

MOV $0x0e, %ah

INT $0x10

However, depending on the service, other registers may also have to be set up before the INT instruction.
This set up is required to tell the BIOS about any pertinent parameters related to the service. For example,
when printing to the display, one has to specify what character to display. This is done by loading the AL
register with the ASCII code of the character, before the INT instruction. For services that return data (e.g.
read disk sectors), we will have to know where the BIOS places the return data; it could be in a register, or
pre-defined locations in memory. Read the Wiki page on “BIOS interrupt call” to learn about different
BIOS interrupt numbers and the services available in them. Few BIOS interrupts that we will use here —
0x10 (video services), 0x13 (disk services) and 0x15 (miscellaneous services).

Real Mode Addressing

Old 8086 and 80186 processors had a 20-bit address bus (an address bus is used by the CPU to specify
which memory location it wants to read/write). Therefore, a maximum of 2% bytes (1 MB) could be
accessed by the CPU. However, the CPU had only 16-bit registers. Since it was not possible to store a 20-
bit number in a 16-bit register, the CPU designers introduced the real mode addressing scheme. An
address is to be specified using two 16-bit numbers — one called the segment number and the other called
the offset. The format is segment:offset. An address such as 0xFO00:0xFFFF will be converted to a 20-bit
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address by shifting the segment number 4 bits to the left and then adding the offset part to the resulting
number. Therefore, 0xFO00:0xFFFF would become OxFFFFF.

Note that a real mode address such as 0xF800:0x7FFF will also convert to OxFFFFF. So, the same memory
location can be addressed using different segment-offset combinations in real mode. What will
0xF800:0x8000 convert to? Answer: 0x00000. Applying the conversion method to 0xF800:0x8000 actually
results in 0x100000; but the CPU only keeps the lower 20 bits, hence only 0x00000 remains. This
introduces a wrap-around behavior in memory addressing, and was in fact exploited by some programs in
the old days. For the sake of backward compatibility, all modern CPUs start with real mode addressing.

Organization of SOS on Disk and Memory

Before heading forward, we need to decide how the memory and the disk will be laid out in a SOS system.
Say we decided on the following disk layout on a 128 MB disk.

Sector 0 Sectors 1 to 1024 Sectors 1025 to 262143

Sector 0 of the disk is the boot sector; some special code/data will go here. Remember, when the
computer boots from this disk, it will load the contents of this sector into memory and start executing it.
We will use sectors 1 through 1024 (512 KB in total) to store the operating system executable (the SOS
kernel). Remaining sectors will be used to store user programs and files.

Similarly, we need to decide where in memory will the kernel (and user programs later) be loaded. Lets
use the following map for now.

o [ o o [
o [ o o [
o [ (=] o [
(=] | < © [
- ] o m 2]
¥ " [ » [
(=] (=] (=] o o

We will load the kernel image (a maximum of 512 KB) from the disk and place it at location 0x10000
through Ox8FFFF (512 KB total) in memory. We will use the memory range 0x90000 to 0x94000 (16 KB) as
stack for the kernel. Also, the address range 0xB8000 to OxBFFFF should not be touched since it is used as
video memory (more on this later). This setup is sufficient to get us started. But, the question is how will
the kernel image move from the disk to memory? That’s where the special code in the boot sector comes
into play. Since, the CPU is designed to copy sector 0 of the disk to memory, and then execute whatever is
there, all we need to do is put some code in sector O that reads sectors 1 through 1024 from the disk,
loads it to memory at our designated location, and starts executing it (essentially starting up the SOS
kernel). Sector 0 is sometimes also called the MBR (Master Boot Record).

Master Boot Record

The MBR is 512 bytes in size. However, the BIOS does not consider any 512 bytes in sector 0 of a disk as a
boot record. There are some guidelines we need to follow regarding how these 512 bytes are to be
organized. There are many standards; we will use the simplest of all of those — the classical MBR format
(see more formats in Wikipedia “Master Boot Record”).
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The most important part for a sector 0 to be considered a boot sector by the BIOS is the boot signature.
The boot signature is the number 0x55 stored in the 511" byte of the sector, followed by the number
OxAA stored in the 512" byte. Besides this, a classical MBR has the following structure.

Byte Content Size
0 to 445 Code 446 bytes

462 to 477 Partition table entry 2 16 bytes

494 to 509 Partition table entry 4 16 bytes

511 OxAA 1 byte

Therefore, we have a maximum of 446 bytes to write the code necessary to load the SOS kernel from the
disk to memory. Partition table entries are used if the disk is divided into partitions. We do not really need
to put any meaningful data in them for SOS to work; but we will put some data in entry 1 for the sake of
demonstration. A partition table entry is 16 bytes. See the Wikipedia article on “Master Boot Record” to
learn what goes in these 16 bytes. The first byte of these 16 bytes should be 0x80 to indicate that the
partition is bootable (contains an 0S). The fifth byte contains a number indicating which type of file
system is present in the partition. All commercial operating systems have an associated number. We will
use the number 0x10 to mean SOS, although this number is already is use! We will ignore the other bytes.
Therefore, the 512 bytes of sector 0 of the disk will look like the following.

446 bytes of code to load the SOS kernel from disk to memory

80 00
00 | 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00
00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 | 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA

Our first programming task is to write a program (in assembly) which when compiled produces 512 bytes
of output that resembles the above picture (see MBR.S and then build/MBR.bin using the gHex
utility).

SOS Startup

So far so good. We have managed to load the SOS kernel executable from the disk to memory, and can
start executing it. But, what is the kernel executable? Well, it could be any program. For us, it will be the
SOS operating system. We will build it progressively, adding more and more features as we go. The kernel
executable will begin by switching to protected mode. In SOSO, the entry point of our SOS kernel is in the
startup. S file. It begins by obtaining the total amount of memory installed in the system and storing it
in a memory location that we have named total memory.

A20 Line

Unlike the 8086 processor, the 80286 processor had a 24-bit address bus, and then 80386+ processors
had 32-bit or 64-bit address buses. A 32-bit address bus allows us to address up to 2% bytes (4 GB) of
memory. As a result of this advancement, wrapping of memory addresses as in a 8086 processor will no
longer happen. This may cause problems for some programs that relied on the wrapping behavior. To
prevent this from happening, the BIOS always starts the CPU with the 21% line of the address bus (also
called the A20 line) disabled. We need to enable the A20 line so that we can use more than just 1 MB of
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memory. There are multiple ways of enabling the A20 line; we use the method where we need to send
some special commands to the onboard keyboard controller (see OSDev Wiki “A20 Line”). Why isn’t there
an enable method for A21 — A31 lines?

32-bit Protected Mode Addressing

Intel 80386 introduced the 32-bit protected mode. In this mode, the CPU is designed to check for memory
access violations, i.e. whether a process is using its part of the memory or trying to access memory
locations in restricted areas. Protected mode also requires a different form of addressing. The design
involved first separating memory into segments, and then specifying where these segments begin and end
in a table called the Global Descriptor Table (GDT). A memory address is then made up of two numbers —
a 16-bit segment selector number (stored in one of the segment registers: CS, DS, ES, FS, GS, or SS), and a
32-bit number for the offset (EIP and ESP are typically used here). The top 13 bits of the 16-bit segment
selector tells which entry in the GDT do we want to use. The lowest two bits (bits 0 and 1) specify what is
known as the Requested Privilege Level (RPL), which we will discuss a little later. Therefore, an address
such as 0x0010:0x100 means we want to access the third (top 13 bits of 0x0010 are 0b0000000000010 =
2) segment as described in the GDT, and in that segment we want the 256" (0x100) byte. So if segment 3
begins from, say, location 0x1000, then we will be referring to memory location 0x1000 + 0x0100 =
0x1100 (the 4353™ byte).

In protected mode, the CPU fetches the next instruction to execute from the CS:EIP address. Therefore,
what is stored in CS is important. However, we cannot simply move a value into the CS register. Similarly,
the CPU uses SS:ESP as the location of the stack.

Privilege Level

A privilege level (PL) indicates what ring(s) does the CPU need to be in to access a certain resource. If a
resource is set to be at PL 0, then it can be accessed only when the CPU is in ring O (kernel mode). If PL is
3, then the resource can be used whenever the CPU is in ring 3 (user mode) or lower. Two bits are used to
specify a privilege level, with PL = 0 (00 in binary) and PL = 3 (11 in binary) being the most heavily used.
The current ring (called the Current Privilege Level or CPL) is always equal to that given by bits 0 and 1 of
the value stored in the CS register. As we will see later, a privilege level appears in other places as well,
and it is important to understand how they interplay.

Global Descriptor Table (GDT)

Lets take a deeper look at the GDT. A GDT is a table. Each entry in the table is 64 bits long. Remember that
the purpose of one entry is to describe one memory segment (as to be used in protected mode
addressing). We will need one GDT entry for each memory segment. The 64 bits of a GDT entry are used
in the following manner.

* 32 bits to specify the flat memory address where the segment begins (also called the segment
base)

* 20 bits to specify the size of the segment (also called the segment limit)

* 8 bits (1 byte) to specify properties of the segment — the PL required to access the segment
(called the Descriptor Privilege Level or DPL), is there code or data in the segment? is the
segment writable? etc.

* 4 bits to specify additional properties, such as whether the segment size is in 1 byte or 4 KB units.

See kernel only.h (the GDT DESCRIPTOR struct) for a detailed description of a GDT entry.
Note that the above information is put into an entry in a rather convoluted manner! For example, the 20
bits of the segment limit is put in bits 0 to 15 (16 bits), and then bits 48 to 51 (4 bits) of the 64 bit entry. To
begin, our GDT will have three entries and look like this.
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GDT entry 0 0000000000000000 | Null segment (not used)
GDTentry 1 00cf9a000000ffff | Base =0, Limit =4 GB, Has code, DPL=0
GDT entry 2 00c£f92000000f£fff | Base =0, Limit =4 GB, Has data, DPL=0

Here entry 1 is describing a segment which spans 4 GB of memory, starting at location 0, is used to store
instructions, and can only be accessed if the CPU is currently in ring 0. Entry 2 is similar but it is a segment
that is used to store data. As we can see, segments may overlap. Entry 1 will be referred to by the CS
(Code Segment) register when running kernel code, and entry 2 will be referred to in other segment
registers (e.g. the SS register).

Notice that although we have talked about segmenting memory, we have set up one large segment
spanning the entire memory. This is fine, since GDT entries 1 and 2 can only be used in ring 0 (by the
kernel), and the kernel should be able to access all locations in memory. We will later create more GDT
entries for user programs; there we will have to carefully set the base and limit, so that programs cannot
access each other’s memory locations.

More on Privilege Levels

Privilege levels seem to appear in many places. So, lets list them cleanly and understand how they
interact.

1. Descriptor Privilege Level (DPL): This is the privilege level appearing in a GDT entry. It is the
privilege level required to access the memory segment described in the GDT entry.

2. Requested Privilege Level (RPL): This is the privilege level we want to switch to. It is part of the 16
bits (bit 0 and bit 1) of the value we load into a segment register. The upper 13 bits of the value
states which GDT entry we want to use. An important point to note is that we cannot directly
move a value into the CS segment register.

3. Current Privilege Level (CPL): This is the privilege level currently set in the value in the CS register,
i.e. bits 0 and 1 of the CS register. Once again, the value in the CS register cannot be changed
directly.

Given these three places where a privilege level appear, the CPU allows us to change privilege levels only
if max(CPL,RPL) < DPL. Hence, a user program (running in ring 3) cannot directly change to kernel mode
(ring 0) — why? For example, entry 1 of the GDT is set such that privilege level is 0. So, DPL of entry 1 = 0.
The CPL is 3 when the user program is running. Lets say that the user program wants to access a memory
location using the address 0x0008:0x1000. This means that the user program is trying to access byte
number 0x1000 in the segment described by GDT entry 1 (higher 13 bits of 0x0008 evaluate to 1). Also, it
wants to access the location as a ring 0 program (bits 0 and 1 of 0x0008 evaluate to O, i.e. RPL = 0).
However, since max(CPL=3, RPL=0) = 3 is not less than or equal to DPL (=0), the CPU will not allow the
access and cause a fault. You can test other possible combinations and see when privilege level changes
are allowed.

This is a simplified explanation. Refer to sections 5-5 to 5-8 of the developer’s manual for an extended
explanation.
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The GDT Setup

The GDT can be placed anywhere in memory. But, how will the CPU know where it is? The answer is a
special instruction, LGDT, which we will use to inform the CPU of the location of the GDT in memory. The
LGDT instruction has one operand — a memory address. When the LGDT instruction is executed, the CPU
reads 6 bytes from the memory address. The top 4 bytes signify the memory address where the GDT
starts in memory, and the remaining 2 bytes signify the size (in bytes) of the GDT. The CPU notes these
values in a special register called the GDTR, and uses it whenever it needs to look up the GDT. Note that
the GDT must be set up before protected mode is enabled.

Enabling Protected Mode

With the GDT set up, we are now ready to enable protected mode. This is done by enabling a bit in a
special register called CRO (control register zero). CRO is a 32-bit register used to enable/disable different
features of the CPU. For example, if bit 0 of this register is set (made 1), then the CPU goes to protected
mode. Similarly, if bit 2 is set, the CPU assumes that no hardware to do floating-point operations exists in
the system. See Wikipedia “Control register” for details on other bits.

Here is a dilemma. As soon as protected mode is enabled, the CPU will start using CS:EIP as the address
for the next instruction. So, the value in CS has to be a valid segment selector — the number 0x0008,
referring to GDT entry 1 and RPL = 0. Unfortunately, neither is this number guaranteed to be in CS, nor
can we simply use a MOV instruction to do so! The solution is to use the LIMP (long jump) instruction,
which allows us to specify a segment selector and an offset as its two operands. With an instruction such
as

LJMP $0x0008, <address of the instruction immediately following this instruction>
we force the CPU to load the CS register with 0x0008.
Calling main()
After protected mode is enabled, we first set up the stack for the kernel to use —
1. load the data/stack segment registers (ES, DS, FS, GS, and SS) with 0x10 (GDT entry 2,
RPL=0), and

2. load the stack pointers (ESP and EBP) with 0x94000 (see SOS layout in memory).

And then we call the main() function (in main.c), which will do a few more initializations and then start
up the command prompt. We can also do most of the programming in C now.
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In main()

The main function in main.c begins by finishing the remaining initializations, and then starting the
console. Lets look at some of these initializations.

Disk Initialization

The disk initialization routine init disk is in disk.c. The function queries the disk to determine the
size of the hard drive. This is done using some port I/0. We will postpone discussion on this until we have
discussed 1/0 subsystems (towards the end of the quarter). At this point, the function of importance is the
read_disk function, which allows us to read a given number of sectors from the disk, provided a sector
(LBA) number to start the read from, and a buffer to place the read data.

Display Initialization

The display initialization routine init display is in display.c. The memory range OxA0O0O to
OxBFFFF is used to map the display to memory. In other words, writing to these addresses is equivalent to
writing to the display. A Color Graphics Adapter (CGA) system uses the 32KB range from 0xB8000 to
OxBFFFF. In an 80 columns by 25 rows text mode display, each location on the display is represented by 2
bytes. Address mapping happens row wise.

0xB8000
O0xB809E
oo 0

e / \0x38F9E

0xB8F00

The two bytes corresponding to each location stores the foreground and background color (in the first
byte), followed by the 8-bit ASCII code of the character to be displayed (in the second byte). The higher 4
bits of the first byte signify the background color and the lower 4 bits signify the foreground color. For
example, if we write Ox1F to memory address 0xB8000 and 0x53 to address 0xB8001, we would be writing
to the top-left corner of the screen.

display.c defines the global variables cursor x and cursor_y to keep track of the current cursor
position, and a color variable to store the current color setting. Macros for the colors usable in a 16-color
text mode are given in kernel only.h. The current cursor position (the position where the blinking
line is displayed) is necessary so that we can keep track of the position where the next character should
be displayed (when the user presses a key).

The display initialization function draws an ASCII art of the word ‘SOS’ using a white-on-blue color, and
displays the total memory in the system and the disk size. The cursor is then set to (0,8) and the color is
set to light-grey-on-black. We will always keep this artwork visible; so our display screen will actually be
from row 8 to row 24.
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A number of helper functions are available in display.c, including one similar to printf (called
sys_printf). Later we will have to implement a system call so that users can indirectly use this
function to display on the screen. Take a look at the helper functions. The most important helper function
is the display character function, which writes a character to the appropriate location in video
memory (depending on the current cursor position), increments the cursor position, and then displays the
cursor at the new position.

Setting Up Interrupt Handlers

In protected mode, the CPU has 256 interrupts that we can program. Recall that when an interrupt
occurs, the CPU transfers execution to the corresponding interrupt service routine (also called an
interrupt handler). Therefore, before interrupts can be used, we need to tell the CPU where the handlers
are corresponding to the 256 possible interrupts.

Interrupts O to 31 are special interrupts, often called exceptions. They are fired when certain special
events happen; e.g. interrupt zero is fired when an instruction attempts to perform a division by zero. See
0OSDev Wiki “Exceptions.” We can use the remaining interrupts (32 to 255) in whatever way we like — to
transfer control to the OS when user programs need some kernel level service (as in a system call), or
when certain hardware events (e.g a key press) occur.

The interrupt number is simply an index into a table, the Interrupt Descriptor Table (IDT). An entry in the
IDT encodes the location of the function to execute when an interrupt occurs. The init interrupts
function in interrupts.c sets up this table and tells the CPU about the location of the table.

Interrupt Descriptor Table (IDT)

Much like the GDT, the IDT is also an array of 8-byte (64 bit) entries describing “gateways” (gates, in
short) to what has to be done when an interrupt occurs. x86 systems allow for 256 such gates; therefore
the IDT has 256 8-byte entries. Gates can be interrupt-gates or trap-gates, the difference being that
hardware interrupts are automatically disabled when accessing interrupt-gates. There is also a third type
called task-gates (not very popular with modern operating systems). The 64 bits of an IDT entry are used
in the following manner.

* 48 bits to specify the protected mode address of the function to execute when the interrupt
fires; in other words, a 16-bit segment selector and a 32-bit offset

* 8 bits to specify properties of the interrupt routine — a privilege level specifying the ring(s) in
which the CPU must be if this interrupt is invoked using the INT instruction, is it an interrupt/trap
gate?, etc.

e 8 bits are reserved and are always zero

See kernel only.h (the IDT DESCRIPTOR struct) for a detailed description of an IDT entry.
Again, like a GDT entry, the above information is put into an entry in a convoluted manner! See section
6.10 and 6.11 of the developer’s manual for an extended discussion on interrupts.

The IDT is stored as an array in our OS—IDT DESCRIPTOR IDT[256], definedin interrupts.c.
The contents of this array are filled so that a default interrupt handler runs on any of these interrupts. The
interrupts are set as interrupt-gates and the interrupts cannot be manually invoked from user space
(privilege level zero). We will change the handler for some of these interrupts, but a little later.

A Default Interrupt Handler

Lets look at how the default interrupt handler works. This handler is defined in interrupts.c. The
CPU always pushes the current CS, EIP and EFLAGS values on an interrupt (remember these). The CPU
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may also push a few other values depending on which ring was active when the interrupt occurred. If the
interrupt is set to be an interrupt-gate (in the IDT), then the CPU will also disable further interrupts.

The default handler begins at the location labeled as handler default entry. The code first
disables further interrupts (the hardware does this automatically if the interrupt is set up as an interrupt-
gate), pushes the CPU state (all segment and general-purpose registers) into the stack, and then calls the
default interrupt handler function. This function simply prints the message “Unhandled
interrupt!” on the screen. After returning from the function, we need to bring the CPU back to the state it
was in before the interrupt. First, we pop off the segment and general-purpose registers, then enable
interrupts, and then call the IRETL instruction. This is a special instruction that will pop the CS, EIP and
EFLAGS values from the stack (remember, they were pushed by the CPU when the interrupt was fired)
and load the values into the appropriate registers. As a result, the CPU will revert back to the state it was
in before the interrupt, and continue execution.

Remember, we said that we cannot load values directly into the CS and EIP registers. IRETL is one way to
do it — push new values for CS, EIP and EFLAGS into the stack, and then use IRETL.

Load IDT

Okay, so we have a default interrupt handler, and we have the IDT array setup so that the handler for all
interrupts is the default one. But, how will the CPU know where the IDT is in memory? The answer is the
LIDT instruction, which works similar to the LGDT instruction.

The Programmable Interrupt Controller (PIC)

The PIC is a small piece of hardware on the motherboard that is responsible for generating interrupts
when certain hardware events occur (see Wikipedia “Intel 8259”). These interrupts are also known as
IRQs. The Intel 8259 PIC supports up to 16 IRQs. Some of them are already mapped to certain hardware
events by default — e.g. IRQ 1 is fired when a user hits a key on the keyboard (see OSDev Wiki “IRQ”). Our
responsibility is to attach them to interrupt numbers (so that an interrupt handler runs when an IRQ fires),
and also set up appropriate handlers for those interrupt numbers.

The setup PIC function in interrupts.c does this. It initializes the PIC, sets it up so that IRQ
numbers 0 to 7 result in interrupt numbers 32 to 39, and IRQ numbers 8 to 15 result in interrupt numbers
40 to 47. After that, it masks (disables) all IRQ lines except for IRQ 1 (the keyboard IRQ). All of this is done
using some port I/0, which we will talk about later.

The Keyboard Interrupt Handler

So, IRQ 1 is fired when the user presses a key on the keyboard. And, IRQ 1 will result in firing interrupt 33.
At this point, this will not result in anything interesting since the default interrupt handler is set up to run
on all interrupts. Lets change this. The keyboard interrupt handler is written in keyboard.c and the
init keyboard function changes IDT entry 33 so that the keyboard handler is run when a key is
pressed on the keyboard. The handler begins similar to the default one, but performs a series of involved
operations that read the key pressed and then stores it in the current key variable. The actions here
will make more sense after we discuss port 1/0. The important function here is the sys_getc function,
which is used to retrieve user keystrokes. Later, we will implement a system call so that user programs
can also obtain keyboard input.

Here is what the global interrupt mapping looks like at this point.
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PIC
IDT

L# IRQO —T—*

default handler e—eo

entry 0
L#* IRQ1 ——o | hardware

events

exceptions,

default handler e—e entry 31

A IRQ 15 ——e

default handler e—e entry 32

keyboard handler e——re entry 33

default handler o—e entry 4

default handler o——e entry 48

default handler e—+e entry 255

Starting the Console

With all of these initializations done, we are now ready to start the console. The console is part of the
kernel, so it will run in kernel mode. Therefore, it can print to the display and read keystrokes without any
system calls. The infinite loop of the console is in start _console in console.c. The loop body reads
a command, runs it if its valid, and then repeats. This is straightforward C code. The only command that
does something at this point is diskdump, which we can use to print the contents of one or more
sectors of the hard drive (using the read disk function).

There is another file called 10.c that we have not talked about. The functions in this file allow us to talk
to hardware using port I/0, a topic that we will discuss later.

Putting It All Together

Okay! So, we have a bunch of assembly files (MBR.S and startup.S) and then a bunch of C files. We
understand how control begins at MBR. S, then transfers to startup.S, and then into the C files. But
recall that MBR. S supposedly loads one big kernel executable from the disk to memory! Where is that
kernel executable? Well, we will have to compile startup.S and the C files, and create that kernel
executable. The create script does this for us. Essentially, it compiles each file individually (see the
Makefile if you are conversant with it) to create the machine level instructions, and then combines them
together into one big executable called kernel.bin. An important point here is that when we combine
the individual machine instruction files, the one coming from startup.S must be the first one. This is
because the code in MBR. S will transfer control to the beginning of the kernel executable, and we want
the code in startup.S to run before anything else.

Note that MBR. S is not part of kernel.bin. That is because the MBR is not part of the OS kernel. It is
simply 512 bytes of code/data that needs to sit in the first sector of our disk. For testing, we will use a 128
MB file instead of an actual hard drive. This file will be set up just like the way SOS is supposed to sit on a
disk — the first 512 bytes will be the MBR code, the kernel executable will be in the next 1024 x 512 bytes,
and the rest of the file will be all zeros. The create script does this for us. It first creates a 128 MB file
called sOS . dsk, fills it up with all zeros, copies the compiled code of MBR. S into the first 512 bytes, and
then copies kernel.bin (our SOS kernel executable) immediately after it.
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MBR.S startup.S| | .Cfiles

compile

A

startup.o| | .o files

e

MBR.bin kernel.bin

/S S

Sector 0 Sectors 1 to 1024 Sectors 1025 to 262143

SOS.dsk

When we tell VirtualBox to use this file as the disk, things roll into action. The code in MBR.bin runs first,
which loads kernel.bin into memory and starts running it. As a result, all initializations are performed,
and the console comes alive. Now we are ready to implement deeper OS concepts.
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Running User Programs (SOS1)

In this part, we will extend SOSO so that it can run one user program at a time. However, a few things
have to be decided before we can load a user program and start executing it.

GDT Entries

Our GDT at this point contains three entries: the null descriptor (entry 0), and two segments that span all
available memory (entries 1 and 2). Entry 1 is setup with DPL = O (kernel access only), and will be used
whenever the kernel runs its code. Entry 2 is setup with DPL = 0 and will be used whenever the kernel
accesses any data in memory. Since no memory addressing is possible without referring to a GDT entry (in
protected mode), we will have to setup two more GDT entries so that user programs can use them (DPL =
3). For now we will not set any base, limit or other properties for these entries; the values will depend on
the running user program. The GDT will look like this at this point.

GDT entry 0 0000000000000000 | Null segment (not used)

GDTentry 1 00cf9a000000ffff | Base =0, Limit =4 GB, Has code, DPL=0
GDT entry 2 00c£f92000000f£fff | Base =0, Limit =4 GB, Has data, DPL=0
GDT entry 3 0000000000000000 | Not initialized

GDT entry 4 0000000000000000 | Not initialized

GDT entry 5 0000000000000000 | TSS (discussed later)

The GDT is declared in the startup.S file in SOS1 (ignore the sixth entry for now). We can access the
GDT in our C code by declaring the gdt variable with an extern modifier in the C file — extern
GDT_DESCRIPTOR gdt[6].So, before a user program is started, we will set up gdt[3] and gdt[4]
appropriately.

Default Exception Handler

Recall that interrupts O to 31 are generated for special events (often arising due to software problems).
We will change the handler for these interrupts so that we can distinguish between regular interrupts and
exceptions. The default exception handler is in exceptions.c. Its setup is similar to that of the default
interrupt handler. When an exception occurs, the default exception handler will print
on the display, and then attempt to switch to the console. We are assuming here that the
source of the exception is a user program, and the kernel code is error free!

PIC
IDT

L# IRQ0 —T—o

default exception handler eI

entry 0
L* IRQ1 ——e | hardware

events

exceptions,

default exception handler e—re entry 31

A2 |RQ 15 ——e

default handler ®—T® entry 32'/

keyboard handler e—e oy 33

default handler e—e entry 4

default handler o—re entry 48

system call handler e—re ontry 143

program termination handler e——e entry 255
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User Programs

Users write their programs in one of many languages — C, C++, Java, Python, etc. These high-level
language programs are then transformed into machine opcodes, i.e. instructions that the CPU knows how
to execute. These are instructions such as ADD, MOV, JMP, CALL, etc. Compilers do this job. The question
then is, although the CPU’s instruction set is the same irrespective of whether we run Windows or Linux,
why doesn’t a program compiled in Windows also run in Linux?

Executable Format

The answer to the aforementioned question is “because the executable produced by the compiler is not
simply the machine opcodes, but also includes other metadata (e.g. file size, 32-bit or 64-bit code,
location of entry point, sections, etc.), whose organization varies from one OS to another.” When machine
opcodes are packaged together with the metadata, we have what is called an executable format. In
Windows, it is the EXE format, and in Linux, it is the ELF format.

In SOS, we do not include metadata in our executable. So, our program executables will consist of only
machine opcodes. This is also known as a raw binary executable.

System Calls

User programs will not be able to do much if we do not allow them to get OS services. So, we will need to
implement at least two system calls, printf and getc, before a basic user program can be run. The
best way to understand a system call is to track its flow from the point where it is called. Lets do that. We
will see how a printf in our user program will channel down to the sys printf function in
display.c.

user program lib.c INT 0x94 st e kernelservices.c

calls printf printf(...) }?axn dleltl:lterrupt execute_0x94()
display.c display.c kernelservices.c
sys_printf(...) _printf(...) _0x94 _printf()

The first component we need is a user side implementation of print£. This function is not part of the
kernel and can be invoked directly by a user program. We have putitin 1ib.c, which also includes other
functions that user programs can use. printf in 1ib.c uses the register based method of parameter
passing — it loads the arguments (all are addresses) in the EBX and ECX registers, loads a service identifier
number into EAX (we will use the number 2 to mean the display printing service; macros are defined in
1lib.h), and then generates interrupt 0x94. What will happen then?

In SOSO, this will print “Unhandled interrupt!” on the display since the handler for interrupt number 0x94
is the default handler. So now we need a different handler for entry 148 (0x94) of the IDT; we need a
system call handler. The main function puts the address of this handler through init system calls
in systemcalls.c. The system call handler begins at the location labeled as
handler syscall 0X94 entry. The code here is similar to any other interrupt handler, i.e. save
CPU state, handle the interrupt, and then reload the CPU state. Our handler calls execute 0x94 in
kernelservices.c, which is where the system call is serviced. execute_0x94 checks which service
is requested (how?) and then calls the appropriate routine, in our case the 0x94 printf routine.
Note that we are already in kernel mode. So, it is simply a matter of checking the parameters passed in
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the EBX and ECX registers, and then calling sys_print£. Control flows back the way it came, and the
handler will return back to printf in 1ib.c. 0x94 printf also puts the value 1 (success) or O
(failure) in the EDX register, which the printf in 1ib.c can check to see if the system call was
successful. This method can also be used when the kernel needs to pass data back to the user program
(see the getc system call).

Creating User Programs

User programs can now print to the display and get user input by using the printf and getc functions
in 1ib.c. But, how do we type our programs, and then compile them to a raw binary? Well, we cannot
do that in SOS! SOS does not have an editor and a compiler. Hence, we will write our programs outside of
SOS, compile it outside of SOS, and then put them in a fixed location in SOS . dsk. After all, our objective
is to learn how user programs are executed by an operating system. Note that SOS also does not have any
file system; so, inside SOS, we cannot refer to the program by a name. Instead, we will have to remember
where we put the program executable on the disk, how many bytes it is, and then load it using the
read_disk function.

We can type a user program in an editor of our choice (e.g. gedit) in the virtual environment. The
language will be C, and the program should not use any library function that is not provided in 1ib.c.
Similarly, when implementing a library function, we cannot use any standard C function (no stdlib, stdio,
etc.). We will put the program in the userprogs directory. We should not use the regular gcc or g++
compilers, as they will produce executables in the ELF format. However, different flags can be passed to
these compilers that force them to produce a raw binary executable. There is a script called gcc2 that
will do this. To compile your program test.c, go to the userprogs directory, and run

./gcc2 test.c -o test.out

test.out is then a raw binary executable. gcc2 also compiles in the code from 1ib.c, so that when
our user program calls print£, the code will be part of the executable. Note that this is not the way it is
done in commercial operating systems. Ideally, it is sufficient to have only one copy of the library in

memory, and different user programs should be able to use it. But then, this is SOS!

memory offset instruction

ret *~

main() code

8 |pushebp ¥

system call to

terminate
. &
int Oxff -« program

0 |callOx8 7

There is a problem here. Say we write a program that prints “Hello World.” So, the program will make a
system call and do the job. Once the printing is done, control will go back to the user program. But, how
will SOS know that the program has finished execution? The way to make this happen is to modify all user
programs so that the first instruction calls the main function of the user program, and the second
instruction issues a specific interrupt (in our case interrupt OxFF). The following instructions will come
from our program. When a program generates interrupt OxFF, the handler never returns control back to
the program. This handler is set up in systemcalls.c. The gcc2 script is coded to make this
necessary modification in all user programs. Further, the create script takes the executables and places



Understanding a Simple Operating System

them on the disk while creating SOS.dsk. See the output messages of create, and note down the
sector number and size (in bytes) of the program on disk.

The run Command

SOS0 does not have a command to run user programs located on the disk. So, lets add one. The run
command (implemented in runprogram. c) takes two arguments — first one specifying the start sector
number of the program on the disk, and the second specifying the number of sectors that the program
occupies. So, if a program is located at sector 1100 and is 700 bytes in size, the command will be

run 1100 2

This command allocates memory for the program, transfers the executable from the disk to memory,
saves the console’s state, sets up a process control block, and then switches control to the user program.
Lets look at these steps one by one.

The DUMB Memory Manager

The function of a memory manager is to keep track of occupied memory, and tell where memory is
available whenever other pieces of code request for it. Things can get complex here. In SOS1, we will have
a rather dumb memory manager. This manager does not really track occupied memory, but instead
always says that all of physical memory beginning at 4MB is available for use. alloc_memory in
memman.c implements this, and always returns 0x400000 as the beginning address of the allocated
memory. It does check to see that we are not requesting more than what is there : (total memory —
4MB) .

Program Address Space

A program needs, at the very least, a stack to be able to execute. Where will this stack be in memory? Lets
design how our program will be laid out in memory.

& <& $ $
& & § L
QQ S ) &
& & & &
Qo Qo N Qo
A b ol
User pl.:'ogram User—-mode stack Kernel-mode
raw binary (12 xB) stack
(loaded from disk) (4 KB)
e.g. user program size = 32KB

process address space

The run command will begin by requesting the (DUMB) memory manager an area of memory large
enough to hold the program executable and 16KB more. As a result, alloc_memory will return the
address 0x400000. So, the user program’s executable will always begin from memory address 0x400000.
Immediately following the executable, we will use 12KB as the stack space for the user program (also
called user-mode stack). Note that stacks grow downwards, so the stack actually begins at the end of this
12KB. Immediately following the user-mode stack space, we will use 4KB for another kind of stack, the
kernel-mode stack. The CPU will use this special stack during system calls; more on this later.
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Process Control Block

When a system call is made, the handler needs to save the current CPU state. When the handler is done,
it needs to revert back to the CPU state it was in before the interrupt. Where will the CPU state be stored?
We need a process control block (PCB) for each process — the console process and the user program
process. The PCB structure (PCB struct) is defined in kernel only.h. Currently, it has variables for
the CPU registers, and two other 32-bit variables, memory base and memory limit.memory base
will hold the start address of the process address space, and memory limit will be such that
(memory base + memory limit) isthe last address of the process address space.

typedef struct process control block {

struct {
uint32_t ss;
uint32_t cs;
uint32_t esp;
uint32_t ebp;
uint32_t eip;
uint32_t eflags;
uint32_t eax;
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
uint32_t esi;
uint32_t edi;

} cpu;

uint32_t memory base;
uint32_t memory limit;

} __ attribute__ ((packed)) PCB;

We have defined two global variables — PCB console and PCB user program — in
runprogram.c. In addition, there is also a PCB pointer — PCB *current process — which we will
point to user program before switching to it. The system call handler will always save the CPU state in
the PCB pointed to by current process. When reloading the state, we will do so from either
console or user_ program, depending on which process we are switching to. The keyboard interrupt
handler uses the stack to save the CPU state.

Switching to a User Program

We are almost there. After loading the user program executable from the disk to memory, here is how
the run command proceeds.

First we need to put values into console.cpu.esp, console.cpu.ebp, console.cpu.eflags
and console.cpu.eip so that when we want to resume the console (as a result of INT OxFF), we
resume from the point where we switched to the user program. This is what makes SOS1 single tasking —
the console does not get control until the user program has issued INT OxFF. We can simple put the
current values of ESP, EBP and EFLAGS into their respective locations in the console PCB. As for the EIP,
we will put the memory address following the switch to user process function call (see
runprogram.c).

Next, its time to fill in some values into the user program PCB, namely, the memory base,
memory limit, cpu.ss (stack segment selector; should refer to GDT entry 4), cpu.esp (beginning
address of stack relative to the segment base), cpu.cs (code segment selector; should refer to GDT
entry 3), cpu.eip (beginning address of instructions relative to the segment base), and cpu.eflags.
Segment selectors must be formed so that they refer to the correct GDT entry, and have the correct RPL
(=3).
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With the user program PCB initialized, we call switch to user process to do the actual switch.
Remember that we are yet to initialize entry 3 and entry 4 of the GDT. The contents of these entries will
be used when the user program is running. For example, when the user program is running, and say EIP is
0x10, we are actually referring to memory location (segment base in entry 3 + 0x10). So, we will fill the
two entries now. See kernel only.h for a description of the GDT DESCRIPTOR struct and
accordingly fill in the values in gdt [ 3] and gdt[4]. For example, the segment base and segment limit of
these entries should be same as memory base and memory limit in the user program’s PCB. Next,
we will load the CPU state from the PCB into the actual registers, but hold off on the SS, ESP, CS, EIP and
EFLAGS registers.

So how will the actual switch to ring 3 happen? The answer is the IRETL instruction. When this instruction
is executed, the CPU performs the following steps.

done only if new CS
indicates ring change

kkkkk*k** (4 bytes) _FV SS
—_—

kkkkkxk* (4 bytes) ESP
kkkkxkxkkk (4 bytes) — EFLAGS
*kxkxk%* (4 bytes) > s
_—
SS:ESP—» kk*k**k*k*k*x (4 bytes) pop EIP

Pop 32 bits from the stack and place it in EIP

Pop 32 bits from the stack and place the lower 16 bits in CS

Pop 32 bits from the stack and place it in EFLAGS

If lower 2 bits of new CS indicates that a ring change will occur, then
a. Pop 32 bits from the stack and place it in ESP
b. Pop 32 bits from the stack and place the lower 16 bits in SS

A

So, in order to switch to ring 3 and start running the user program, we only need to make sure that the
values we want to put in the SS, ESP, EFLAGS, CS, and EIP registers are pushed into the stack (in that
order) before issuing IRETL. With the right values in the stack, IRETL will cause a ring switch, bring alive
our user program and its instructions will start running. Voila! SOS1 can now run programs. Notice that
IRETL is also used to resume a process in the keyboard interrupt handler. A part of the run command and
most of the switch to user process function is the next assighment.

Kernel-Mode Stack

We never talked about those extra four kilobytes, the kernel-mode stack. Lets do. When the user program
issues a system call, the CPU will come back to ring 0 and execute the system call handler. The handler is
just like any other function; it also needs a stack to work. Will it use the same stack that the user program
was working with? For security reasons, no! The CPU actually wants us to switch to a different stack. And
before we switch from ring 0 to ring 3, we must tell the CPU where this stack is. In fact, modern CPUs can
automatically save state (called hardware task switching) when a process switch happens, but operating
systems prefer doing it via software instructions. The TSS_STRUCTURE struct in kernel only.h
is a data type to hold the CPU state. Since we are not using hardware task switching, most of the variables
there are irrelevant, except for esp0 and ss0.

Lets see how we specify the kernel-mode stack. First, we define the variable TSS_STRUCTURE TSS in
systemcalls.c. Next we create a sixth GDT entry that describes the memory area that has this
variable (see setup TSS in systemscalls.c), and then use the LTR instruction to tell the CPU
where the TSS_STRUCTURE variable is in memory. Whenever the INT instruction is executed, the CPU
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will load TSS.esp0 to ESP and TSS.ss0 to SS, effectively performing a switch from the user-mode
stack to the kernel-mode stack. Thereafter, it will push the values in SS, ESP, EFLAGS, CS, and EIP to the
kernel-mode stack, and then run the handler (which will continue to use the kernel-mode stack).
Therefore, switch to _user process should put the right values in TSS.esp0 and TSS.ss0
before doing the switch; otherwise the user program will crash when it does a system call.
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Running Multiple User Programs (SOS2)

SOS1 is capable of running user programs. While a program is running, SOS1 is blocked, except when
handling system calls. The control is transferred back to the program after the system call, or an interrupt,
is handled. SOS1 resumes only when the program terminates (INT OxFF). This model makes SOS1 a single-
tasking system. In this part, we will extend SOS1 so that it can run multiple user programs by switching
between them periodically.

NAIVE Memory Manager

Unlike SOS1, SOS2 has a functional memory manager. S0S2’s NAIVE memory manager is implemented in
memman.c. It views memory in terms of 4KB frames. It keeps track of which frames are free and which
are in use through a bitmap vector (mem_bitmap). We will put this memory bitmap at memory address
0x100000 (frame 256). SOS supports up to a maximum of 64MB RAM. So, 2KB (0x100000 to 0x1007FF) is
sufficient for the bitmap vector. The NAIVE memory manager does not handle allocation of the first 4MB
of memory, and considers it as being unavailable (first 128 bytes of the memory bitmap is set to 0x00).
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Memory is requested using the alloc_memory function. The number of bytes requested is converted
into a whole number of frames. The memory manager then finds the first frame where that many number
of frames are contiguously available. This is also called the first-fit approach. See the memory manager
code to understand how it is implemented.

The NAIVE memory manager also implements a dealloc_memory function. This can be used to return
memory back to the manager. During a call to alloc_memory, the memory manager stores the number
of allocated frames in the first 4 bytes of the first allocated frame. The pointer returned by
alloc_memory is offset by 4 bytes from the beginning of the first allocated frame. So, whenever
dealloc_memory is called, the memory manager simply looks at the 4 bytes preceding the pointer,
and determines how many frames are being returned.

Programmable Interval Timer (PIT)

Remember the PIC. It is a small piece of hardware on the motherboard that is responsible for generating
interrupts when certain hardware events occur (see Wikipedia “Intel 8259”). These interrupts are also
known as IRQs. For example, IRQ1 is generated when a keyboard event occurs. We mapped IRQ1 to
interrupt 33, and installed a keyboard handler for IDT entry 33.

Similar to the PIC, there is another small piece of hardware on the motherboard called the programmable
interval timer (PIT). The Intel 8253 PIT is simply a counter that can be programmed to generate an output
signal when it counts down to zero (see Wikipedia “Intel 8253”). The 8253 PIT operates at a theoretical
frequency of ~1193182 Hz, i.e. ~1193182 output signals per second. We will set up the 8253 PIT to work
at a frequency of ~100 Hz, i.e. generate 100 signals per second, or a signal every 10 milliseconds. This set
up is done in the init_ time function in timer.c. The main function calls this function before
starting the console. Again, the configuration is done using some port I/0. The question is what happens
when the output signal is generated? By default, the PIT output signal is connected to IRQO of the PIC;
and, we have mapped IRQQO to fire interrupt 32. Therefore, the interrupt handler registered for IDT entry
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32 will execute once every 10 milliseconds. Of course, we have our default handler sitting there, so our
display will simply be flooded with the “Unhandled interrupt!” message. What we need is a timer
interrupt handler! Before that, lets introduce process states.

Process States

While multiple user programs may be active in SOS, only one of them can actually run on the CPU. SOS
will simply switch between the programs to create the illusion that all programs are running. This requires
us to introduce the notion of process states, so that we can track what each process is doing. Processes in
SOS2 can be in one of five states:

1. NEW: process is created

2. READY: process is ready to run
3. RUNNING: process is running

4. WAITING: process is blocked

5. TERMINATED: process has finished

A process begins in the NEW state, and stays in this state during its initialization. This state will be more
important in SOS3. As soon as the process is initialized, it moves to the READY state. When it is dispatched
to the CPU, it moves to the RUNNING state. A RUNNING process will move back to READY state when a
timer interrupt (interrupt 32) occurs. The timer interrupt handler will do this. When a process issues a
system call, it is moved to the WAITING state. When the process can resume after a system call, it is
moved to the READY state. Finally, when the process issues INT OxFF (as its last instruction), it is moved to

the TERMINATED state.
initialized m , INT OXFF
- - -
timer
interrupt
system call INT 0x94
completed

The state of a process is stored in the process’ PCB. Therefore, we have added a few more entries to the
PCB C struct. The state variable will hold the process’ current state; pid is a process identifier number
assigned by SOS; sleep_end will be used as an alarm clock to wake the process (coming up); and,
prev_PCB and next PCB will be used to arrange multiple PCBs into a doubly linked list structure
(coming up).

|

typedef struct process control block {
struct {
uint32_t ss;
uint32_t cs;
uint32_t esp;
uint32_t ebp;
uint32_t eip;
uint32_t eflags;
uint32_t eax;
uint32_t ebx;
uint32_t ecx;
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uint32_t edx;
uint32_t esi;
uint32_t edi;
} cpu;
uint32_t pid;
uint32_t memory base;
uint32_t memory limit;
enum {NEW, READY, RUNNING, WAITING, TERMINATED} state;
uint32_t sleep _end;
struct process_control block *prev_PCB, *next PCB;
} _ attribute__ ((packed)) PCB;

Timer Interrupt Handler

We enabled the onboard timer (8253 PIT) and have set it up to generate interrupt 32 every 10
milliseconds. The handler for this interrupt is in timer.c, and begins at the handler timer entry
location. We will call every timer interrupt an epoch. The handler for the timer interrupt first stores the
state of the current process (using the current process pointer) in its PCB, increments an epoch
count variable (elapsed_epoch), updates the uptime clock on the display, and then invokes the
schedule something function in scheduler.c. The scheduler something function will
implement a scheduler that will decide which process gets to next run on the CPU. Therefore, no matter
which user program is running, our scheduler will always get invoked every 10 milliseconds.

PIC
IDT
. Le IRQ0 ——e PIT
default exception handler e——--e entry 0
L» IRq1 ——e Keyboard
exceptions,
- hardware
default exception handler e——e entry 31 events
L2 IRQ 15 ——e

timer interrupt handler e——re entry 32

keyboard handler e——re entry 33

default handler e——e entry4

default handler e—te entry 48

system call handler e——e entry 148

program termination handler e——e entry 255

Note that the state save in the timer handler is done differently based on whether the current process is
the console or not. This is because, when the timer interrupt occurs, the CPU could be running the
console, or a user program. Since the console runs in ring 0, the CPU will only push EFLAGS, CS and EIP
into the stack before executing the handler; compared to when a user program is running, when the CPU
will push SS, ESP, EFLAGS, CS and EIP before running the handler. So the stack will look different in the
two cases.

Sleep System Call

S0S2’s system call (INT 0x94) handler has also undergone a change. Unlike SOS1, where transfer goes
back to the user program after the system call is serviced, SOS2 calls the scheduler after servicing a
system call. The scheduler is left with the decision to whether resume the same process, or pick a
different one (we do the latter). The program termination (INT OxFF) handler and the default exception
handler also call the scheduler instead of resuming the console.
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SOS2 also has a new system call that user programs can use — sleep. Any process calling the sleep
function (with an argument specifying the number of milliseconds) is moved to the WAITING state. See
kernel services.c. The sleep end variable in the process’ PCB is set to the epoch when the
sleep will finish (the process’ state then have to be changed to READY).

The run Command

The run command in SOS2 behaves a little differently than in SOS1. Its syntax is the same, and is
implemented in the run function in runprogram. c. SOS1 had one PCB for the console and one for the
user program. We reused the user_ program PCB since only one user program could be active at a
time. However, SOS2 can have multiple processes active, and we do not know how many. Therefore, the
run function allocates memory for the PCB of a process using the memory manager. After allocating
memory for the PCB, the run function works similar to SOS1 — requests memory to load the program (this
time the NAIVE memory manager makes sure two programs are not given the same memory area), loads
the program from disk to memory, sets up the process PCB (with state as NEW and sleep end as 0),
and then calls the add_to_processqg function in scheduler.c. As you can see, unlike in SOS1, the
run function does not start running the user program immediately, and actually returns back to the
console. The program will run when the scheduler picks the process. In other words, SOS2 treats all user
programs as background jobs. In fact, we have also disabled the getc system call, since background jobs
cannot obtain keyboard input. Any user program that attempts to use getc will move to the WAITING
state forever.

( processq_next

PCB 1 PCB 2 l PCB 3 PCB n
// state = state = state = state =
READY READY WAITING TERMINA
TED
prev_PCB prev_PCB prev_PCB e prev_PCB
next_PCB next_PCB next_PCB next_PCB
PCB console

NULL €«—| prev_PCB

next_PCB —>NULL
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Process Queue

As we saw, the run command does not really run the user program. It simply creates the PCB of the
program, loads the program to memory, and calls the add_to_processq function in scheduler.c.
The add_to_processqg function is what inserts the newly created process in the process queue. The
process queue in SOS is a circular doubly linked list of the PCBs of all user processes currently in the
system. The global variable PCB *processqg next should always point to the head of this queue.
When a new process is created, add_to_processq inserts the process at the tail end of the queue, i.e.
before the one pointed to by processqg next. We will use the prev_PCB and next PCB variables in
the PCB structure to create the list. add_to_processq changes the state of the process to READY after
adding it to the queue. Note that the addition of a process to the queue should not be interrupted;
otherwise, we may end up messing up the list. Therefore, interrupts are disabled before modifying the
list, and then enabled after the modification is done.

The Scheduler

The SOS2 scheduler is implemented in the schedule something function in scheduler.c. This
scheduler is a simple round-robin scheduler with 50% share given to the console. Therefore, the scheduler
picks READY processes from the process queue one after the other; but every alternate timer interrupt, it
runs the console. For example, if there are three READY processes in the queue (say P4, P,, and Ps), the
order of execution will look like the following.

P, = console = P, 2 console & Ps = console = P; = console = P, = console = Ps 2 console 2 ...

Note that the scheduler should only choose a process that is in READY state, and not any that is in
WAITING or TERMINATED state. It is very possible that the queue has multiple processes, but none of
them are in a READY state. In that case, the scheduler has no option but to choose the console again.

Before the scheduler picks a READY process, it cleans up processes that are in the TERMINATED state, and
wakes up processes whose sleep end time has reached. Cleaning up of TERMINATED processes involve
removing them from the doubly linked list (so that the scheduler do not encounter them again) and
freeing the memory used by the process. This is done through the remove from processq function.
Recall that when a program calls the sleep system call, the sleep end value in the process’ PCB is set
to the time epoch when the sleep will end. The system call also sets the process’ state to WAITING. The
scheduler should change the state of such processes to READY if the current time epoch (can be obtained
using the get_epochs function in timer.c) is larger or equal to the one set in sleep end. This
should be done as and when a process in WAITING state is encountered in the queue.

After this cleanup, the scheduler needs to pick a READY process. But, which one? We have processes in a
circular list. So, let the scheduler pick the process pointed to by the processqg next pointer. Before
the scheduler actually switches to this process, it should change processqg_next to now point to the
next process in the list (using the next PCB pointer of the selected process). Otherwise, the same
process will get selected every time. Moreover, it should set current process (remember, the
system call and timer interrupt handlers use this pointer to save state), and change the state of the
selected process to RUNNING. The actual switching is done using the switch to user process or
switch to kernel process functions. Both functions take as argument a PCB - use
switch to user process to switch over to a user process selected from the process queue, and
switch to_kernel process when switching over to the console process.

The implementation of the add to processq, remove from processqg and the
schedule_ something functions are left as an exercise. All of these are in scheduler.c. There are
three pre-defined global variables in scheduler.c — PCB console, PCB *current process,
and PCB *processq_next. The source code for parts of SOS1 that was left as an exercise (the run
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and switch to user process functions) is not made visible in SOS2, and provided as a C object
file. The create script of SOS2 adds in this code so that the functions are available to you for use.

The Complete Picture

When the user starts a program, SOS2 adds it to the process queue. The round-robin scheduler is invoked
every 10 milliseconds. As the scheduler picks one process after the other, the programs make progress,
creating the impression that all programs are making progress. And we have multi-tasking in SOS!

ps Command

SOS2 has a new console command — ps. The command shows a list of active processes (the ones in the

process queue), along with their pid, state, location in memory and size. The implementation of this
command is in console.c.
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Paging (SOS3)

In this section, we will introduce paging in SOS. Paging will allow SOS processes to have a much larger
address space than the amount of available physical memory. It will also allow us to store different parts
of the process address space in non-contiguous locations in physical memory.

GDT Entries

When paging is enabled, logical addresses in an x86 architecture will go through two translation units. The
first is the segmentation unit, and the second is the paging unit.

Logical SEGMENTATION Linear PAGING Physical
Address UNIT Address UNIT Address

We have already been using the segmentation unit, which essentially adds the segment base to the
(logical) addresses generated in a program. The output of this unit is also called a linear address. Till now,
the linear addresses have been the same as the physical memory addresses since the paging unit is not
enabled. When we turn the paging unit on, a linear address will then be converted to a physical address
based on the page tables. This could become complicated and messy! It will be easier if we can somehow
disable the segmentation unit. Unfortunately, we cannot do that. Another way around is to set up
memory segments that span the entire memory, i.e. all segments have their base at zero (also called flat
segmentation). In this way, the linear address is the same as the logical address. This is exactly what we
will do in SOS3.

GDT entry 0 0000000000000000 | Null segment (not used)
GDTentry 1 00cf9a000000ffff | Base =0, Limit =4 GB, Has code, DPL=0
GDT entry 2 00c£f92000000f£fff | Base =0, Limit =4 GB, Has data, DPL=0
GDT entry 3 00cffa000000ff£ff | Base =0, Limit =4 GB, Has code, DPL=3
GDT entry 4 00cf£f2000000£f££ff | Base =0, Limit = 4 GB, Has data, DPL=3
GDT entry 5 0000000000000000 | initialized in setup_TSS()

In other words, we will not be setting GDT entries 3 and 4 while switching to user programs. In fact, all
programs will use the same segment. The paging unit will take care of the necessary memory protection
so that one process cannot touch the memory area of another process. In the remaining discussion, the
term “logical address” implies the linear address since they are the same.

Logical Addresses

Logical addresses are the addresses generated by programs. Since they are not directly related to physical
memory addresses, we can design how a process is organized in the set of all possible logical addresses,
and set up the paging unit to do the appropriate translations. For example, when using a 32-bit logical
address space, logical addresses can range from zero to 2%-1 (OXFFFFFFFF). It is up to us to decide where
in this address space will be our process code, where the stack will go, where the heap will start, and so
on. We did go through a similar exercise when designing the program address space in SOS1. SOS3 will
use a 32-bit address space; so the logical address space of a process will range from 0x00000000 to
OxFFFFFFFF.
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NAIVE Physical Memory Manager (PMM)

Since we have started differentiating between physical memory and logical memory, let us make some
minor changes to our memory manager. In fact, we will have two memory managers now, one for
physical memory and one for logical memory (we will discuss this more in SOS4).

The NAIVE physical memory manager is similar to the memory manager in SOS2. The difference is that it
distinguishes between kernel memory and user memory. We will define kernel memory to be the first 4
MB of physical memory. The kernel can allocate memory from this region for its internal data structures
(e.g. a process PCB). User memory is everything beyond 4 MB. The kernel uses this region for user
programs and stacks.

Allocation of frames is done using the alloc_frames function in pmemman.c. This function takes as
argument the number of frames to allocate (each frame is 4 KB) and a mode. The mode is either
KERNEL ALLOC (allocation done from first 4 MB) or USER_ALLOC (allocation done from 4 MB
onwards). It returns the start address of the first allocated frame. The memory manager uses a memory
bitmap to keep track of allocated memory. Deallocation is done using the dealloc_frames function,
which takes as argument the start address of a frame and the number of frames to deallocate. Notice
that, unlike in SOS2, the memory manager wants us to explicitly state how many frames to deallocate.

OxFFFFFFFF
Unused
0xC0400000

Kernel data structures and dynamic allocation
0xC0100000

0xC0010000 _
Unused
oxC

Unused

0x0

Kernel Logical Address Space

The SOS kernel resides at physical address range 0x10000 to 0x8FFFF, and the kernel stack is at 0x94000.
The kernel code uses GDT entry 1, which has a base of zero. Here is a question: say the kernel code refers
to memory address 0x100 (a logical address); the physical address then will be 0x100 + segment base
(zero) = 0x100; but no portion of the kernel is at physical memory address 0x100; why isn’t SOS crashing
then? The answer is in the create script. The create script in SOS0, SOS1, and SOS2 tells the compiler
to start counting addresses from 0x10000 onwards when compiling and building the kernel executable
(see kernel.1ld. S in the build directory). Therefore, all addresses assigned to variables and functions
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in the kernel code are always more than or equal to 0x10000. In other words, any logical address
generated in the kernel code is actually equal to the physical address. We are going to change this now.

The create script in SOS3 builds the kernel executable such that all addresses assigned to variables and
functions in the kernel code start at 0xC0010000. This is also true for addresses that are hard coded in the
code; for example, the mem_bitmap pointer points to the address 0x100000 in SOS2, but now points to
0xC0100000 in SOS3. Note that the segmentation unit alone will fail to translate an address correctly in
this case. For example, the logical address 0xC0010000 should refer to the first byte of the kernel
executable, i.e. physical address 0x10000. However, 0xC0010000 will be translated to the linear address
0xC0010000 by the segmentation unit. If there is no paging (linear = physical), the MMU will then try to
access physical address 0xC0010000, which is not correct. Therefore, the paging unit must be set up
before the SOS3 kernel executable can run. We will do the actual setup a little later. In effect, what we
have done is added a number (lets call it the KERNEL BASE = 0xC0000000) to all logical addresses
generated/used in the kernel in previous versions of SOS. The layout of the logical address space of the
kernel is shown in the previous page.

In summary, our SOS kernel only uses its logical address range 0xC0010000 to OxCO3FFFFF.
Process Logical Address Space

Similar to the kernel, every process that runs in SOS will also have a layout of where its different parts will
be in the logical address space. Lets say we decided to use the following layout.

OXFFFFFFFF

Do Not Use
0xC0000000
Unused
0xBFBFFFFF Kernel-mode stack (4 KB)

@XBFBFEFFF User-mode stack (12 KB)

first 4KB aligned
address after

process code and =
data

Heap

0x0

Therefore, a process will have the executable instructions and data beginning at logical address zero. The
first 4 KB aligned address (i.e. an address that is a multiple of 4096) after the process code and data will
be the beginning of the heap. The heap is used when memory is dynamically allocated to the process. We
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do not have this capability yet; but it is not difficult to implement. The user-mode stack for the process
will begin at logical address OxBFBFEFFF, and the kernel-mode stack will begin at logical address
OxBFBFFFFF. Note that while the kernel-mode stack can still grow up to 4 KB (like in SOS1 and SOS2), the
user-mode stack now has much more room to grow. The 12 KB in the layout diagram only means that 12
KB of physical memory is allocated for the user-mode stack when the process is started. Later, we may
have to map other objects in this process address space; the large space between the heap and the user-
mode stack will be a good place then.

The logical address range from 0xC0000000 to OxFFFFFFFF is not going to be used by a process. It is not an
absolute necessity, but gives us some performance advantage if we do so. The reason will become clear
after we set up page tables.

Process Control Block

In order to keep track of different logical addresses, our PCB struct has some new members. We will have
to assign values to these members before the process is loaded into memory. The new members are
collected in the sub-structs called disk and mem.

typedef struct process control block {
struct {

} cpu;
uint32_t pid;

wint32 t memory base;
wint32—t memory imits

struct {
uint32_t start_code;
uint32_t end code;
uint32_t start_brk;
uint32_t brk;
uint32_t start_stack;
PDE *page directory;

} mem;

struct {
uint32_t LBA;
uint32_t n_sectors;
} disk;
} _ attribute__ ((packed)) PCB;

Since we are using flat segmentation now, memory base and memory limit are no longer needed.
The mem and disk sub-structs should be assigned the following values.

* start code: logical address where the program executable begins

* end_code: logical address where the program executable ends

* start brk: logical address where the heap begins

* brk: logical address where the heap currently ends (same as start_brk for now)

* start_ stack: logical address where the user-mode stack begins

* page directory: physical address where the process’ page directory begins

* LBA: start sector of program in disk

* n_sectors: number of sectors occupied by program in disk

The assignments to the mem struct members are done in the init logical memory function in

lmemman.c (coming up). Most of the values can be obtained by looking at the process logical address
space layout.
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Kernel Page Tables

As mentioned earlier, the paging unit must be set up correctly so that logical addresses get translated into
the correct physical addresses. The translation is automatically done by the hardware; we just have to
provide the right page tables to the MMU. We will use two-level paging in SOS3, with 4 KB pages. Lets first
see how the page directory and the page tables for the kernel need to be set up.

Two-level paging uses one page directory, and one or more page tables. The page directory is an array
containing 1024 entries; each entry is 4 bytes. Each page directory entry (PDE) helps translate a 4 MB
region of the logical address space. Entry 0 is used to translate logical address range 0 to Ox3FFFFF, entry 1
is used to translate 0x400000 to Ox7FFFFF, ..., and entry 1023 is used to translate OxFFCO0000 to
OXFFFFFFFF. Each entry tells us the location of a page table, which further divides the 4 MB region
corresponding to the entry into 4 KB regions (pages). The SOS3 kernel uses logical addresses 0xC0010000
to OxCO3FFFFF. Which page directory entry (PDE) covers this address range? The top 10 bits of any
address in this range is 0b1100000000 = 768. This means PDE 768 is the only entry that our kernel will
ever use. The 4 bytes we put in a PDE has the following structure.

32 bit (4 byte) page directory entry
31:12 11:6 54 3 2 10

frame number where +———
page table is located

page table accessed?

disable caching?

write-through caching?

accessible by all?

write allowed?

page table present?

See kernel only.h for a description of what the different flags mean (also see OSDev Wiki “Paging”).
The crucial parts are here:
* the frame number tells us the physical memory address of the page table corresponding to this
entry; if x is the value in a PDE, then x & OxFFFFFOOO is the physical address of the corresponding
page table, which is the same as (frame number << 12)
* bit 0 (present bit) should be 1 if we have set up a page table corresponding to the entry;
otherwise it should be zero
e  bit 1 (read/write bit) should be 1 if we want to allow the kernel to read and write to the address
range corresponding to this entry; setting it to zero means read only
*  bit 2 (user/supervisor bit) should be 1 if we want to allow user processes to be able to access the
corresponding address range; setting it to zero will restrict access to ring 0 only

kernel only.h has pre-defined macros that you can use to set these bits in a PDE. For the SOS3
kernel, all but PDE 768 will be set to zero (bit 0 is zero, meaning page tables for those regions are not
present). We will put the page directory for the kernel at physical memory addresses 0x101000 to
O0x101FFF (4 KB). The global variable PDE *k page_ directory defined in lmemman. c points to this
memory address. We have defined the data type PDE especially for use with page directory entries;
behind the scenes it is simply auint32_t or an unsigned 32-bit number.
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The next question is what value do we put in page directory entry number 768. To do that, we will first
have to set up a page table. Just like a page directory entry is used to translate a 4 MB logical address
range (entry 768 maps address range 0xC0000000 to OxCO3FFFFF), entries in a page table further divide
that range into 4 KB regions. Therefore, entries in the page table corresponding to PDE 768 will divide the
address range as follows: entry 0 will be used to translate addresses 0xCO000000 to 0xCOOOOFFF, entry 1
is used for 0xC0001000 to OxCOO01FFF, entry 2 for 0xC0002000 to 0xCO002FFF, and so on. The page table
will help translate a 4 MB region; so, there will be 1024 entries in a page table (1024 x 4 KB = 4 MB). The
structure of a page table entry (PTE) is similar to that of a page directory entry, except for some additional
flags.

32 bit (4 byte) page table entry
31:12 11:9 8 7 6 5 4 3 2 1 @

frame number «——

global page?

page modified?

page accessed!?

disable caching?

write-through caching?

accessible by all?

write allowed?

page present?

Again, see kernel only.h for a description of what the different flags mean (also see OSDev Wiki
“Paging”). The crucial parts are here:

* the frame number tells us the physical memory address where the 4 KB region corresponding to
this entry starts; if x is the value in a PTE, then x & OxFFFFFOOO is the physical address of the start
of the region

* bit 0 (present bit) should be 1 if there is a physical memory region corresponding to the logical
address range; otherwise it should be zero

e bit 1 (read/write bit) should be 1 if we want the kernel to be able to read and write to this region;
setting it to zero makes the region read only

*  bit 2 (user/supervisor bit) should be 1 if we want to allow user processes to be able to access this
region; setting it to zero will restrict access to ring 0 only

*  bit 8 (global bit) should be 1 if we want information on this entry to be permanently present in
the TLB

kernel only.h has pre-defined macros that you can use to set these bits in a PTE. We will put the
page table corresponding to PDE 768 at physical memory addresses 0x102000 to Ox102FFF (4 KB). The
global variable PTE *pages_768 defined in Lmemman . c points to this memory address. Similar to the
PDE data type, we have defined the data type PTE for use with page table entries.

The init kernel pages function in lmemman.c initializes both k page directory and
pages_768. This function is called by the main function before starting the console. The page table for
PDE 768 is located at physical address 0x102000. Therefore, the number that goes into
k_page directory[768] is (0x102000 | PDE PRESENT | PDE READ WRITE), which is
equal to 0x102003. This implies that the page table is at 0x102000 (= 0x102003 & OxFFFFF000), that it is
present (bit 0 of 0x102003 is 1), and that the address range has both read and write access (bit 1 of
0x102003 is 1).
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To set up the page table (pages_768), we need to decide where does the logical address ranges
corresponding to each page table entry map to in physical memory. This is where the location of the
kernel executable in physical memory comes into play. Since our kernel is actually located in addresses
0x10000 onwards, a logical address such as 0xC0010000 should translate to physical address 0x10000.
Similarly, a logical address such as 0xC0010001 should translate to physical address 0x10001. We do not
have to specify this translation for every possible logical address in use; it is sufficient to specify where a
particular 4 KB region starts in physical memory. The hardware will add the correct offset extracted from
the logical address (the least significant 12 bits). So, the numbers that go into the page table entries will
be as follows.

pages_768[0] 0x00000000 | PTE_PRESENT | PTE_READ WRITE|PTE GLOBAL

pages_768[1] = 0x00001000 | PTE_PRESENT | PTE_READ WRITE |PTE_GLOBAL
pages_768[16] = 0x00010000 | PTE_PRESENT | PTE_READ WRITE |PTE_GLOBAL
pages_768[17] = 0x00011000 | PTE_PRESENT | PTE_READ WRITE |PTE_GLOBAL
pages_768[18] = 0x00012000 | PTE_PRESENT | PTE_READ WRITE |PTE_GLOBAL

pages_768[1023]

0x003FF000 |PTE_PRESENT|PTE_READ WRITE|PTE GLOBAL

Each entry specifies the beginning of the corresponding 4 KB region in physical memory, that the entry
has a valid mapping (bit O of each entry is 1), that the regions can be modified (bit 1 of each entry is 1),
and that each entry should be permanently stored in the TLB (bit 8 is 1). We have not set bit 2 in any of
the entries, meaning a user process cannot access these regions.

The final question is how do we tell the MMU to use this page directory and page table. It is rather simple.
The MMU always looks at the CR3 control register to determine the location of the page directory in
physical memory. So, we only need to load CR3 with the value 0x101000 (the physical memory address
where k_page_directory begins), and the MMU will start using our paging setup.

As a summary to this long section, here is what happens in hardware when the kernel attempts to access
logical address 0xC0012345. The hardware first figures where the page directory is located by looking at
the value stored in the CR3 register (= 0x101000). Next it determines which PDE should be used for
0xC0012345; that will be PDE 768 (0xC0012345 >> 22 = 768). It checks to see if bit 0 of PDE 768 is 1 (yes it
is). It will also perform some other checks, such as whether the access is for reading or writing, and if it is
allowed, and whether the current mode is allowed access to the entry. After all checks go through, the
hardware reads the value in the entry and determines the start location of the page table corresponding
to this entry (= 0x102000). Next it determines which PTE should be used for 0xC0012345; that will be PTE
(0xC0012345 >> 12) & 0x000003FF = 18. The hardware does similar checks as it did for the page directory.
When all checks go through, the hardware determines the start physical address of the region mapped by
the page table entry (= pages_768[ 18] & OxFFFFF000). In our case, this is 0x12000. Lastly, the offset
from the logical address (0xC0012345 & 0x00000FFF = 0x345) is added to this start address, 0x12000 +
0x345 = 0x12345, thereby generating the physical address. Errors such as access violation or the present
bit is zero will result in an exception (more on this later). As you can see, the translation is automatically
done by the hardware, but it works only because we have set up k page directory and
pages_ 768 correctly.

Process Page Tables

Each process has its own logical address space. While the structure is the same across processes, the
actual logical addresses of certain contents will differ from process to process. For example, program
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executables can be of different size; the amount of logical address space they occupy will also be
different. As a result, the logical address where the heap starts can also be different. Most importantly,
the same logical address will map to different physical addresses in different processes. Therefore, each
process will have to maintain its own page directory and page tables.

Unlike the kernel which only needed one page table (and the page directory), a process will require more
than just one page table. This is because the logical addresses that a process will be using correspond to
different page directory entries. So, the number of page tables that we will have to set up will depend on
how many different 4 MB regions does the process address space touch. As an example, the code/data
part of the process will definitely need PDE O to be set up. But, if the program is larger than 4 MB, then
PDE 1 will also have to be set up. Another PDE needs to be set up for the user-mode and kernel-mode
stack part. Of course, there will be many page directory entries that can simply be set to zero (not
present).

Similarly, the page table corresponding to a PDE may not have to be filled in its entirety. Think about the
page table corresponding to the user-mode and kernel-mode stack area. Our user-mode stack is 12 KB
and the kernel-mode stack is 4KB, giving a total of 16 KB. Everything surrounding these stacks is unused.
So the page table will have 4 non-zero entries (4 x 4 KB = 16 KB); everything else will be zero (not present).
The user-mode stack can be allowed to grow later, in which case some of the zero entries will have to be
properly set. Lets not worry about that for now.

The page directory and page tables set up for a process is done in the init logical memory
function in lmemman . c. This function will first determine how many physical frames (each frame is 4 KB)
will be required to store the program executable, the user-mode stack and the kernel-mode stack. It will
then have to allocate those many  frames  from user memory using the
alloc_frames(...,USER_ALLOC) function in our NAIVE PMM. After this step, we will know the
start physical addresses of each part of the process.

Next, we will have to set up the page directory and page tables to map the logical addresses to the now
known physical addresses. The first step is to compute how many page tables will be needed. Each page
table (and the page directory) needs 4 KB. We will have to allocate physical frames accordingly, but this
time from kernel memory using alloc_frames(...,KERNEL ALLOC). And then comes the fun
part of filling in the entries in the page directory and the page tables, along with the appropriate flag bits.
The page directory and page tables setup for a process is left as an exercise.

Keep in mind that the page directory entries and page table entries always store physical addresses. The
physical address of the process’ page directory will be stored in mem.page_directory of the process’
PCB. When a switch is made to a user process, the switch to user process function will load CR3
with the value stored in mem.page directory of the process’ PCB. This will bring alive the paging
structure of the process and logical addresses will get correctly translated to physical addresses.

Higher Half Kernel

When a process is running regular instructions, its paging structures are providing the necessary logical to
physical address translations. Now lets say the program makes a system call. As a result, we will switch to
kernel code. What happens? System Crash! This is because the page directory currently in use has all zero
entries corresponding to the range of logical addresses that the kernel uses (0xC0010000 onwards).
Therefore, anytime a switch is made to kernel code (during system calls or interrupt handling), the
kernel’s paging structures must be loaded before any code is allowed to run. This is a performance hit
since system calls and interrupts will occur quite frequently. The solution is to copy over the kernel’s
paging data from its page directory to that of every process’ page directory. Since, the kernel uses logical
addresses beyond 0xC0000000, and we designed a process to never use that range, there will be no
conflict. In SOS3, we only need to copy PDE 768 from the kernel’s page directory to that of a process.
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Once this is done, no reloading is necessary when temporarily running kernel code during system calls and
interrupts. All the paging data corresponding to the kernel code is present in the currently loaded process’
page directory. Of course, a different page directory will have to be loaded when a process switch is
performed; but that process’ page directory will also have the kernel page mappings. This copying of PDE
768 from the kernel’s page directory is performed in the init logical memory function.

It is important that kernel paging entries do not have the user/supervisor bit turned on. Otherwise, user
processes will also be able to access that address range, which effectively means, they will be able to
change kernel code. Not pretty!

The run Command

The run command in SOS3 is similar to that in SOS2. The only difference is that it calls
init logical memory  after allocating kernel memory for the process’ PCB.
init logical memory does all the necessary work of allocating memory for the program code/data
and stacks, and setting up page tables. The other difference is that it does not load the program from the
disk to memory. It simply marks the state of the process to NEW and calls add_to_ processq to insert
the process into the process queue.

Process Loading

The actual loading of the process code from disk to memory happens in the schedule something
function in scheduler.c. If the next process to run (processq next) is in the NEW state, the
schedule something function loads the page directory of the process (using
mem.page_directory in the process’ PCB), and then calls load _disk to_memory to load the
program. The loading is done by using the disk.LBA and disk.n_sectors members of the process’
PCB. These values are set by the run function. If the loading is successful, we simply change the state of
the process to READY, and continue as before.

Enabling Paging

We have discussed everything necessary to make paging work in SOS. But, how do we tell the CPU to start
using paging, i.e. turn the paging unit on. Remember CRO. We used it to enable protected mode (by
enabling bit 0). See Wikipedia “Control register” for details on other bits. Paging is enabled when bit 31 of
CRO is set (1). This is done in startup.S, before even the main function of the kernel runs.

However, it is not sufficient to simply turn on bit 31 in CRO. Page directory/tables must be set up before
we do that, and the CR3 register should also be loaded with the physical address of the kernel’s page
directory. But, the kernel’s page directory (k_page_directory) is not set up until we move intomain
and call init kernel pages. Hmmm! To resolve this, startup.S sets up a temporary page
directory and page table before enabling paging. All of this is done in assembly code. The contents of this
temporary page directory/table are same as that of k_page_directory and pages_768. Later when
init kernel pages is called, we switch to k_page directory. PDE O of the temporary page
directory is also setup to do identity mapping (logical address = physical address). Think why that is
necessary!

Page Fault Exception Handler

Exception number 14 is generated if the kernel or a user program tries to access a logical address for
which there is no mapping present in the page directory/tables. This is also known as a page fault. It will
be useful to know which process generated the page fault. SOS3 replaces the default exception handler
for IDT entry 14 with a page fault exception handler (implemented in exceptions.c). If the page fault
was caused by the kernel code, this handler lets you know about it and halts the system. If a user program
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caused the page fault, the handler will print the pid and disk data from the PCB, along with the logical
address that caused the page fault. After that, the state of the user process is changed to TERMINATED. In
the real world, the page fault handler is where you will swap pages in and out of the swap space in the
disk.

Implementation Detail

Look in the init kernel pages function in lmemman.c. While we have been saying that
k_page_directory points to 0x101000 and pages_768 points to 0x102000, the pointers in the
function actually point to 0xC0101000 and 0xC0102000 respectively.

PDE *k page directory = (PDE *)(0xC0101000);
PTE *pages 768 = (PTE *)(0xC0102000);

This is an implementation tweak since we want to be able to work with these pointers in kernel code, and
our kernel is using logical addresses. Paging is already enabled when init kernel pages runand the
temporary page directory and page table is in place at this point. Therefore, k_page directory and
pages_768 must be logical addresses so that when we dereference them (in a statement such as
k _page directory[768] = ...), theygettranslated to the correct physical address to which they
actually refer. In general, for any variable in the kernel code, the physical address is easily obtained by
subtracting the KERNEL_BASE (0xC0000000) from the logical address of the variable.
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Process Synchronization (SOS4)

In this section, we will add process synchronization capabilities to SOS. More specifically, we will allow
user programs to create and use mutex locks and semaphores. We will also provide support for shared
memory. Using these three concepts, a user program will be able to share data with other user programs,
and also synchronize access to the shared data.

NAIVE Logical Memory Manager

Let us first talk about the logical memory manager in SOS4 (this also existed in SOS3, but was rarely used).
The NAIVE logical memory manager is responsible for allocating and deallocating pages. SOS uses the
physical memory manager whenever it needs frames; similarly, SOS uses the logical memory manager
whenever it needs to map an area from the logical address space of a process to physical frames. By
mapping (allocating) previously unused pages of the logical address space, SOS makes it possible for a
process to use the addresses in those pages.

The NAIVE logical memory manager has two functions to allocate pages — alloc_kernel pages and
alloc_user pages. These functions are part of lmemman.c.

alloc_kernel pages allocates pages in the kernel’s logical address space. This function takes as
argument the number of pages to allocate, and then allocates that many frames from kernel memory
usingalloc frames(..., KERNEL ALLOC). Since, kernel memory is always from the first 4 MB of
physical memory, and the paging structures of the kernel are already set up to map 0xCO000000—
OxCO3FFFFF to the first 4 MB of physical memory, the function simply adds KERNEL_BASE to the frame
address to generate the corresponding logical address.

alloc_user pages is more involved. Besides the number of pages to allocate, this function also
requires the start logical address of these pages (called the base in the function arguments). For
example, lets say we want to allocate 3 pages starting at logical address 0x80000000 for a process. To
perform this allocation, we will first need to allocate 3 frames, and then update the paging structures of
the process so that addresses 0x80000000 to 0x80003000 map to these three frames.
alloc_user pages does exactly this. In addition, the function also uses a mode argument to specify
whether the new pages are read only, or read/write enabled. The function returns the start logical
address of the allocated pages, which is the same as base.

There is also a dealloc_page function that unmaps a page, meaning it removes the page table entry
corresponding to the page and deallocates the associated frame.

Shared Memory

Providing shared memory becomes straightforward after paging is enabled. We only need to map pages
belonging to the logical address space of different processes to the same physical frames. However, a few
guestions must be answered for that.

1. Which logical addresses will be used for shared memory?

2. How will the OS keep track of shared memory pages created by a process?

3. How will a process tell the OS that it is creating shared memory pages?

4. How will a process ask the OS to map some of its pages to the shared memory area created by

another process?

Let us first see what data structures and functions are involved in the implementation of shared memory
in SOS4. After that we will see how SOS answers the four questions.
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SOS4 defines a SHMEM data type in kernel only.h. This structure contains three unsigned 32-bit
variables — refs to keep track of the number of processes that has access to a shared memory area;
base to store the physical start frame of a shared memory area; and, size to store the size of the
shared memory area (maximum is 4 MB).

typedef struct {
uint32_t refs;
uint32_t base;
uint32_t size;
} SHMEM;

The PCB struct now also includes a variable called shared memory. This struct variable has two
members — a boolean variable called created to indicate that a process has created a shared memory
area, and an unsigned 8-bit number called key (more on this coming up). SOS4 does not allow a process
to work with more than one shared memory area at a time.

typedef struct process control block {
struct {

} cpu;

struct {
bool created;
uint8_t key;
} shared_memory;

struct {

int wait_on;

uint32_t queue_index;
} mutex;

struct {

int wait_on;

uint32_t queue_index;
} semaphore;

} _ attribute__ ((packed)) PCB;

The following table summarizes the shared memory related system calls and the corresponding kernel
functions that get executed as a result of a system call.

System Call Kernel function

(in lib.c) (in shared_memory.c)

void xsmcreate(uint8_t key, uint32_t size); void *shm_create(uint8_t key, uint32_t size, PCB xp);
void xsmattach(uint8_t key, uint32_t mode); void *shm_attach(uint8_t key, uint32_t mode, PCB *p);
void smdetach(); void shm_detach(PCB *p);

Shared Memory in Logical Address Space

SOS4 always begins shared memory pages of a process at logical address 0x80000000 (the macro
SHM_BEGIN defined in kernel only.h). A process can ask SOS4 to provide shared memory regions
up to a size of 4 MB. This means the largest logical address belonging to a shared memory area will be
0x803FFFFF. This answers the first question we raised earlier.
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Shared Memory Objects

When a process is started, the shared memory area is not mapped (page directory and page table entries
are zero). In order to create the shared memory, a process uses the smcreate system call, passing to it
the size of the shared memory area to create (maximum is 4 MB). At this point, the kernel can do the
frame allocation and update the page tables of the process to map the shared memory area addresses to
the allocated frames. This is easily done by calling alloc_user pages(n pages, SHM BEGIN,
«eeys ««.).Uponreturn from the system call, the process can start to use the memory area. However,
the purpose of shared memory is to allow multiple processes to access these same frames. To do this,
when a process requests SOS to create the shared memory area in its logical address space, SOS will have
to remember the memory frames corresponding to this shared area. SOS can then map the shared
memory addresses of another process to these same frames, effectively making both processes read and
write from the same physical memory area. Note that this will require two processes to somehow tell SOS
that they want to share memory.

To keep track of shared memory areas created by processes, SOS4 uses an array of SHMEM type variables,
SHMEM shm[SHMEM MAXNUMBER] declared in shared memory.c. We will call them shared
memory objects. SHMEM_MAXNUMBER is the maximum number of shared memory objects that will be
tracked by SOS. In SOS4, this cannot be more than 256. An argument to the smcreate system call is an
unsigned 8-bit number called key. Therefore, the key is a number between 0 and 255 (both inclusive).
shm create uses the value in key as an index into the shm array. After creating the shared memory
area for the process, shm_create stores the address of the first frame (mapped to the shared memory
area) and the size of the area in shm[key].base and shm[key].size respectively. It also sets the
shared memory.created variable in the process’s PCB, and stores key in shared_memory.key.
This answers the second and third question.

Once a process creates a shared memory area using a certain key, other processes can attach to it using
the same key value. This is what is done using the smattach system call. shm_attach works very
similar to shm_create, but instead of allocating new frames, shm _attach uses the frame address
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stored in shm[key].base. As you can see, the key value is what allows multiple processes to share the
same physical frames (answer to the fourth question). Cooperating processes will have to decide on a key
to use first; one of the processes will have to then create the shared memory area using the key; other
processes can then attach to the memory area by using the same key. There is a second argument in
smattach called mode, which should be either SM_READ ONLY or SM_READ WRITE (defined in
lib.h). shm_attach also sets the shared memory.created variable in the process’s PCB, and
stores key in shared_memory.key. In the following example, process A creates an integer p in shared
memory using the key 123. Processes B and C attach to the shared memory area created by A using the
same key 123. In effect, the variables p (in process A), g (in process B), and r (in process C), all mean the
same memory location, although they are being used in three different processes. Process B can only read
from the memory location since it has attached to it in read only mode (SM_READ_ ONLY). Process C can
both read and write since it has attached to it in read/write mode (SM_READ WRITE). The creating
process, process A, can read and write by default.

// in process A (creator)
#define MY KEY 123
int *p = (int *)smcreate(MY_KEY,sizeof(int));

// in process B
#define MY KEY 123
int *q = (int *)smattach(MY KEY, SM_READ ONLY);

// in process C
#define MY KEY 123
int *r = (int *)smattach(MY_KEY, SM READ WRITE);

Since SOS4 does not allow a process to create or attach to more than one shared memory area at a time,
it should be possible to detach from the area once a process is done using it. Ideally, any process that
creates or attaches to a shared memory area (as identified by a key) should detach from it. This is done
using the smdetach system call, which finally ends up executing shm_detach. This function frees up
the process’s logical address space corresponding to the shared memory area, i.e. it cleans up the paging
structures corresponding to the logical address range 0x80000000 to 0x803FFFFF. However, it does not
necessarily deallocate the corresponding frames. Whenever a process creates or attaches to a particular
shared memory area using a certain key, the reference count for that area is incremented by one
(shm[key].refs++). When detaching, the reference count is decremented by one. The physical
frames corresponding to the shared memory area are deallocated only if the reference count becomes
zero. Processes can create shared memory areas with a certain key only if the reference count of the
corresponding shared memory object (shm[key].refs) is zero (meaning that the object is not in use).
shm_detach is automatically called for a process when it terminates.

See shared memory.c for details on the implementation and the return values of the system calls. In
the SOS4 implementation, shared memory areas are identified by keys. An alternative to this is to use an
alphanumeric string. Think of the string as a secret known only to the cooperating processes. It is much
better than having a number between 0 and 255. With strings as keys, SOS can use any available shared
memory object (or even allocate it dynamically using alloc_kernel pages); of course, it will have to
remember which object was assigned to which string. Other processes can attach to the object using the
same string. SOS will have to search through the shared memory objects and determine which object was
assigned to the string. This is a little bit more programming, and is the way Linux does it.

Queue
We need a queue implementation for mutex and semaphore wait queues. Ideally, a linked list

implementation is desired; but SOS4 has a simple implementation using arrays in queue.c. A queue in
S0S4 is defined in the following struct.

typedef struct {
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uint32_t head;

uint32_t count;

uint32_t *data;
} QUEUE;

Here, head will store the head of the queue, count will be the number of items currently in the queue,
and data is a dynamically allocated array holding the queue items. As you can see, the items in a queue
are unsigned 32-bit numbers. They will in fact be addresses of process PCBs. All queues must be initialized
by using the init queue function. When a QUEUE variable is created, and initialized, there is really no
place to insert items into the queue (data is NULL). We allocate the data array only when the first item
is inserted into the queue. The data array is one page (4 KB) large, allocated using
alloc_kernel pages. This means it can hold a maximum of 4096/4 = 1024 items, but we can make it
smaller by changing the 0 MAXSIZE macro in kernel only.h. The default value is 256. The queue is
implemented as a circular array; so, trying to write more than Q_ MAXSIZE items will result in some items
being overwritten.

Iltems (PCB addresses) can be inserted into a queue using the enqueue (QUEUE *q, PCB *p)
function. The function inserts the address stored in p to the tail end of the queue g, i.e. (g—->head +
g->count)%Q MAXSIZE. It returns the index in the array data where the item is inserted. Items can
be removed from the queue using the dequeue function. This function will return the PCB address
stored at the head end of the queue; NULL if the queue is empty. There is also a function called
remove queue_ item that allows us to delete an item from the middle of a queue. The
implementation is rather straightforward. Take a look at it before using any of these functions.

Mutex

A MUTEX datatype is defined in kernel only.h. SOS4 predefines an array of MUTEX variables —
MUTEX mx[MUTEX MAXNUMBER] - in mutex.c. MUTEX MAXNUMBER is defined in
kernel only.h and setto 256.

typedef struct {
bool available;
uint32_t creator;
PCB *lock with;
QUEUE waitqg;

} MUTEX;

The MUTEX struct contains the variables necessary to keep track of a mutex variable. The boolean
member available is set to FALSE if the mutex variable is in use by user programs, the creator
member holds the pid of the process that created the mutex variable, the lock _with member has the
address of the PCB belonging to the process that currently has the mutex lock, and the waitqg member is
the waiting queue corresponding to the mutex variable. Note that in a typical mutex implementation
(such as the ones you will read in a book), a boolean variable (say M) is used to track the state of the
mutex; M=1 means mutex is locked, M=0 means mutex is unlocked. We do it in a slightly different
manner, where lock_with not only tells us the state of the mutex, but also which process has the lock.
Effectively, the mutex is unlocked if lock with is NULL, otherwise it is locked. Keep reading to
understand their exact use.

Various functions in mutex.c manipulate the mx mutex variable array. The first of these,
init mutexes, is called by the main function in SOS4. init mutexes makes available=TRUE
for the mutex variables mx[1] to mx[255] (mx[ 0] is not used), initializes the queues associated with
these variables, and marks the mutexes as being in unlocked state (Lock_with is NULL). The following
table lists the other functions in mutex.c and the corresponding system calls that finally execute these
functions. Some of these functions use a mutex_t data type, which is simply a different name for an
unsigned char (see 1lib.h).
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System Call Kernel function

(in lib.c) (in mutex.c)

mutex_t mcreate(); mutex_t mutex_create(PCB *p);

void mlock(mutex_t key); bool mutex_lock(mutex_t key, PCB xp);
bool munlock(mutex_t key); bool mutex_unlock(mutex_t key, PCB xp);
void mdestroy(mutex_t key); void mutex_destroy(mutex_t key, PCB xp);

Every process also has a variable called mutex in its PCB. This struct variable has two members — an
integer variable called wait_ on, and an unsigned integer called queue_index. The use of these
members will become clear as we discuss the mutex implementation.

mutex_t mutex_create(PCB *p)

A program begins by creating a mutex using the mcreate system call. The return value of this system call
is a number between 1 and 255. Think of this number as an identifier for the mutex. Subsequent functions
to use the mutex must pass this identifier to the kernel. The identifier is like the key used in shared
memory, with the difference that the identifier is provided by the kernel and not decided in the user
program. The kernel function mutex create gets executed as a result of the mcreate system call.
mutex create first finds a mutex variable that is available for use in the mx array (available is
TRUE); if none is available, then it returns zero. For the mutex variable that it finds, it then sets
available (in use now), creator (pid of process that made this call), lock_with (lock is with no
process at this point), and resets the waiting queue associated with the mutex (waitqg.head and
waitg.count). The function then returns the array index.

bool mutex_lock(mutex_t key, PCB xp)

A program calls mlock when it wants to obtain a lock on a mutex. The mutex is specified using a
mutex_t value, called the key here. This is the identifier that is returned from an earlier call to
mcreate. The kernel function mutex lock gets executed as a result of the mlock system call.
mutex_ lock returns a boolean. It performs the regular mutex locking operations — if the lock is with no
process, give it to the calling process (change 1lock with) and return TRUE; otherwise, insert the calling
process into the waiting queue of the mutex, and return FALSE. If a process is going to be inserted into
the queue of a mutex, the mutex.wait on and mutex.queue index members of the process’s
PCB are also updated. wait on is set to the key of the mutex on which the process is going to wait, and
queue_index is the index in the waiting queue where this process is inserted. wait_on should be -1
for a process not in the waiting queue of a mutex. These two members are used for cleanup if a process
waiting in a mutex queue abnormally terminates (see free_mutex_ locks).

Notice that the boolean value returned by mutex_lock is not returned to the user program (mlock has
a return type void). In fact, it is used by 0x94 mutex lock in kernelservices.c that calls
mutex lock. A return value of TRUE means that the process’s state can be changed to READY,
otherwise the state should be WAITING (process has been blocked).

bool mutex_unlock(mutex_t key, PCB xp)

A program calls munlock to release an already obtained mutex lock. The kernel function
mutex unlock gets executed as a result of the munlock system call. mutex unlock returns a
boolean, indicating if the unlocking was successful or not. An unlock operation is not successful if the
calling process does not own the lock on the mutex. After a mutex is unlocked (lock _with=NULL),
mutex unlock gives the lock to the process at the head of the waiting queue, if any. Accordingly, we
will have to set lock_with, mutex.wait_ on inthe process PCB, and wake up the process.

void mutex_destroy(mutex_t key, PCB xp)

A process that created a mutex can destroy it. Destroying a mutex simply means that the variable in the
mx array is now available again.
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mutex lock, mutex unlock and mutex destroy should simply return (with the appropriate
return value, if any) if the mutex variable identified by key has not been created. The implementation of
the above four functions is left as an exercise.

It is important to know the exact semantics of operation whenever working with process synchronization
primitives. So, here they are for SOS4 mutex locks. We must ensure that our implementation enforces
these semantics.
* If a process tries to lock or unlock a mutex that has not been created, then the behavior is
undefined (do not know how the user program will behave).
* Only a process that has a lock on the mutex can unlock it.
* Locks are non-recursive, meaning if the process holding the lock tries to obtain the lock again
(before unlocking it), it will cause a deadlock.
*  Only the process that created the mutex can destroy it.
* A mutex is automatically destroyed when the creator process terminates.
* Mutex locks are not automatically released when the process holding the lock terminates. The
process must callmunlock to release the lock.
* A process in the waiting queue of a mutex is automatically removed from the queue if it
terminates (abnormally) while waiting.

Semaphore

The SOS4 semaphore implementation follows the same structure as mutex variables. A SEMAPHORE
datatype is defined in kernel only.h. SOS4 predefines an array of SEMAPHORE variables —
SEMAPHORE sem[SEM MAXNUMBER] - in semaphore.c. SEM MAXNUMBER is defined in
kernel only.h and setto 256.

typedef struct {
bool available;
uint32_t creator;
int value;
QUEUE waitqg;

} SEMAPHORE;

The SEMAPHORE struct contains the variables necessary to keep track of a semaphore variable. The
boolean member available is set to FALSE if the semaphore variable is in use by user programs, the
creator member holds the pid of the process that created the semaphore variable, the value
member has the current value of the semapahore, and the waitg member is the waiting queue
corresponding to the semaphore variable.

Various functions in semaphore.c manipulate the sem semaphore variable array. The first of these,
init semaphores, is called by the main function in SOS4. init semaphores makes
available=TRUE for the semaphore variables sem[1] to sem[255] (sem[0] is not used),
initializes the queues associated with these variables, and initializes their values to zero. The following
table lists the other functions in semaphore.c and the corresponding system calls that finally execute
these functions. Some of these functions use a sem_t data type, which is simply a different name for an
unsigned char (see lib.h).

System Call Kernel function

(in lib.c) (in semaphore.c)

sem_t screate(uint8_t init_value); sem_t semaphore_create(uint8_t init_value, PCB *p);
void sdown(sem_t key); bool semaphore_down(sem_t key, PCB *p);

void sup(sem_t key); void semaphore_up(sem_t key, PCB *p);

void sdestroy(sem_t key); void semaphore_destroy(sem_t key, PCB *p);

42



Understanding a Simple Operating System

Every process also has a variable called sempahore in its PCB. This struct variable has two members —an
integer variable called wait_ on, and an unsigned integer called queue_index. These members have
the same function as in the mutex implementation.

sem_t semaphore_create(uint8_t init_value, PCB *p)

A program begins by creating a semaphore using the screate system call, and passes to it the initial
value to set for the semaphore. The return value of this system call is a number between 1 and 255.
Similar to mutex variables, this number is an identifier for the semaphore. Subsequent functions to use
the semaphore must pass this identifier to the kernel. The kernel function semaphore create gets
executed as a result of the screate system call. semaphore create first finds a semaphore variable
that is available for use in the sem array (available is TRUE); if none is available, then it returns zero.
For the semaphore variable that it finds, it then sets available (in use now), creator (pid of
process that made this call), value (setto init wvalue), and resets the waiting queue associated with
the semaphore (waitqg.head and waitqg.count). The function then returns the array index.

bool semaphore_down(sem_t key, PCB xp)

A program calls sdown when it wants to perform the down operation on a semaphore. The semaphore is
specified using a sem_t value, called the key here. This is the identifier that is returned from an earlier
call to screate. The kernel function semaphore_down gets executed as a result of the sdown system
call. semaphore_down returns a boolean. It performs the regular semaphore down operations — if the
semaphore’s value is not zero, decrement it and return TRUE; otherwise, insert the calling process into
the waiting queue of the semaphore, and return FALSE. Just like in the mutex implementation,
semaphore.wait on and semaphore.queue_ index members of the process’s PCB are also
updated.

void semaphore_up(sem_t key, PCB *p)

A program calls sup to perform an up operation on a semaphore. The kernel function semaphore up
gets executed as a result of the sup system call. semaphore up first increments the value of the
semaphore. It then attempts to wake up a process, if any, which was blocked as a result of a down
operation. Accordingly, we will have to decrement the semaphore again, update semaphore.wait on
in the process PCB, and wake up the process. Recall, that wait_on should be -1 if a process is not
waiting in a queue.

void semaphore_destroy(sem_t key, PCB xp)

A process that created a semaphore can destroy it. Destroying a semaphore simply means that the
variable in the sem array is now available again.

semaphore down, semaphore up and semaphore destroy should simply return (with the
appropriate return value, if any) if the semaphore variable identified by key has not been created. The
implementation of the above four functions is left as an exercise.

The SOS4 semaphore semantics are as follows.
* If a process tries to perform up or down operations on a semaphore that has not been created,
then the behavior is undefined (do not know how the user program will behave).
*  Only the process that created the semaphore can destroy it.
* Asemaphore is automatically destroyed when the creator process terminates.
* A process in the waiting queue of a semaphore is automatically removed from the queue if it
terminates (abnormally) while waiting.
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mem Command

SOS4 has a new console command called mem. It displays the amount of free memory in bytes (hex
notation).

Pitfalls

The mutex and semaphore implementation in SOS4 are simple. As such, it has some downsides. A
malicious process can obtain locks for all 255 mutex variables and prevent other cooperating processes
from making progress. To resolve this, the key used in the lock/unlock and up/down operations should
never be used directly in the kernel code. Instead, the kernel should provide large random identifiers
when the variables are created. There should be a mapping present inside the kernel from the identifier
to the actual mutex/semaphore variable. The same should also be done for shared memory areas. The
variables themselves can be created dynamically and maintained in a linked list, instead of pre-allocating
them in a fixed size array. Another option is to allow the user processes to create the variable in its shared
logical address space, and pass a reference to it during the system calls. The malicious process will have to
attach to the shared memory to do any harm. This can be prevented by having secret alphanumeric
strings (only known to the cooperating processes) as keys to create/attach to a shared memory area.

The queue implementation is another issue. If an array is used to hold the queued items, then the array
better be sufficiently large. Otherwise, there should be provisions for the queue to grow in size when it
becomes full. SOS4 can hold up to 1024 items in its mutex and semaphore queues. Hopefully, this is large
enough!

Sample User Programs

Given below are two SOS4 user programs that make use of the above synchronization primitives. The first
of these is a program that reads one character at a time from a static string and writes it to a shared
buffer of a smaller size. It also creates some shared memory area to hold the buffer, two variables called
in and out to track the next write and next read positions in the buffer, two mutex_t variables and
three sem_t variables. Mutex mx_buffer and mx_consumer_ count provide mutual exclusion to
the slot array and the n_consumers variable respectively. Semaphores sem empty and sem_full
are for synchronized access to slot. Binary semaphore sem_done is to synchronize the termination of
the producer and consumer processes. This is a typical producer program; however, it uses additional
synchronization to make sure that all consumer processes terminate when there are no more items to
produce.

[ kskskskokokokokokokskokokokokokokskskskokokokokokokskokokokokokok
* PRODUCER
skokokokokorokokskskskokokokokokskskskokokokkskskskokokokokokokskkokok /
#include "1lib.h"

#define SM_KEY 36
#define BUFFER_SIZE 5

typedef struct {
char slot[BUFFER_SIZE];
int in, out;
int n_consumers;
mutex_t mx_buffer;
mutex_t mx_consumer_count;
sem_t sem_empty;
sem_t sem_full;
sem_t sem_done;
} SHARED_DATA;

void main() {
char str[] = "It looked like a good thing: but wait till I tell you. We were
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down South, in Alabama—--Bill Driscoll and myself-when this kidnapping idea struck us. It
was, as Bill afterward expressed it, \"during a moment of temporary mental apparition\";
but we didn't find that out till later.\n";

int 1 = 0;
SHARED_DATA xb = (SHARED_DATA x)smcreate(SM_KEY, sizeof(SHARED_DATA));

if (b==NULL) {
printf("Unable to create shared memory area.\n");

return;
}
b->sem_empty = screate(BUFFER_SIZE);
b—>sem_full = screate(0);

b—>sem_done = screate(0);

if (b->sem_empty == || b—>sem_full == || b—>sem_done == @) {
smdetach();
printf("Unable to create semaphore objects.\n");
return;

}

b—>mx_buffer = mcreate();
b—>mx_consumer_count = mcreate();

if (b—>mx_buffer == || b—>mx_consumer_count == 0) {
smdetach();
printf("Unable to create mutex objects.\n");
return;

}

b->in = 0; b->out = 0; b->n_consumers = 0;
printf("Producing items...consumers can run now.\n");

while(str[i]!=0) {
sleep(50); // simulation: producer producing next item
sdown (b—->sem_empty) ;
// begin critical section
b—>slot[b—>in] = str[il;
b->in = (b->in+1)%BUFFER_SIZE;
// end critical section
sup(b—>sem_full);
it++;

}
printf("\nDone producing...waiting for consumers to end.\n");

mlock (b—>mx_consumer_count);
int alive;

do {
mlock(b—>mx_buffer);
alive = b->n_consumers;
munlock(b->mx_buffer);

if (alive > @) { // consumers are alive
sdown (b—->sem_empty) ;
b->slot[b—>in] = @; // send END signal to consumer
b->in = (b->in+1)%BUFFER_SIZE;
sup(b—>sem_full);
sdown (b—>sem_done) ;

} while (alive>0);
printf("\nShutters down!\n");
sdestroy(b—>sem_full)

sdestroy(b—>sem_empty);
sdestroy(b->sem_done);
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mdestroy(b->mx_buffer);
mdestroy(b->mx_consumer_count);
smdetach();

The second program is an implementation for a consumer which reads characters from the shared buffer
and prints it to the display. There can be more than one consumer program running concurrently. All
consumer processes terminate gracefully

[ Fkskskskskokokokokokskokokokokokokskskskokokokokokokskokokokokokok
* CONSUMER
skokskokokorokokskskokskokokokokskskskokokkokskskskokokokokokokskkokok /
#include "1lib.h"

#define SM_KEY 36
#define BUFFER_SIZE 5

typedef struct {
char slot[BUFFER_SIZE];
int in, out;
int n_consumers;
mutex_t mx_buffer;
mutex_t mx_consumer_count;
sem_t sem_empty;
sem_t sem_full;
sem_t sem_done;
} SHARED_DATA;

void main() {
int i;
char c;

SHARED_DATA *b = (SHARED_DATA x)smattach(SM_KEY, SM_READ_WRITE);
if (b==NULL) {

printf("No memory area to attach to.\n");

return;

}

mlock(b—>mx_consumer_count);
b->n_consumers++;
munlock(b->mx_consumer_count);

do {
sdown (b—>sem_full);
mlock(b—>mx_buffer);

// begin critical section
¢ = b—>slot[b—>out];
b—>out = (b—>out+1)%BUFFER_SIZE;
if (c==0) {
b->n_consumers——;
munlock(b->mx_buffer);
sup(b—>sem_empty);
break;
¥

// end critical section

munlock(b->mx_buffer);
sup(b—>sem_empty);

printf("%sc",c);
sleep(300); // simulation: consumer using item
} while (TRUE);

sup(b—>sem_done) ;
smdetach();
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