
X86 Assembly/Floating Point 
x86 Assembly 

While integers are sufficient for some applications, it is often necessary to use the floating point 
coprocessor to manipulate numbers with fractional parts. 

x87 Coprocessor 

The original x86 family members had a separate math coprocessor that handled floating point arithmetic. 
The original coprocessor was the 8087, and all FPUs since have been dubbed "x87" chips. Later variants 
integrated the floating point unit (FPU) into the microprocessor itself. Having the capability to manage 
floating point numbers means a few things: 

1. The microprocessor must have space to store floating point numbers 

2. The microprocessor must have instructions to manipulate floating point numbers 

The FPU, even when it is integrated into an x86 chip, is still called the "x87" section. For instance, 
literature on the subject will frequently call the FPU Register Stack the "x87 Stack", and the FPU 
operations will frequently be called the "x87 instruction set". 

FPU Register Stack 

The FPU has 8 registers, st0 to st7, formed into a stack. Numbers are pushed onto the stack from 
memory, and are popped off the stack back to memory. FPU instructions generally will pop the first two 
items off the stack, act on them, and push the answer back on to the top of the stack. 

Floating point numbers may generally be either 32 bits long (C "float" type), or 64 bits long (C "double" 
type). However, in order to reduce round-off errors, the FPU stack registers are all 80 bits wide. 

Most calling conventions return floating point values in the st0 register. 

Examples 

The following program (using NASM syntax) calculates the square root of 123.45. 

global _start 

  

section .data 

    val: dq 123.45  ;declare quad word (double precision) 

  

section .bss 

    res: resq 1     ;reserve 1 quad word for result 

  

section .text 

    _start: 

  

    fld qword [val] ;load value into st0 

    fsqrt           ;compute square root of st0 and store in st0 

    fst qword [res] ;store st0 in result 

  

    ;end program 

Essentially, programs that use the FPU load values onto the stack with FLD and its variants, perform 

operations on these values, then store them into memory with one of the forms of FST. Because the x87 

stack can only be accessed by FPU instructions ‒ you cannot write mov eax, st0 ‒ it is necessary to 
store values to memory if you want to print them, for example. 
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A more complex example that evaluates the Law of Cosines: 

;; c^2 = a^2 + b^2 - cos(C)*2*a*b 

;; C is stored in ang 

  

global _start 

  

section .data 

    a: dq 4.56   ;length of side a 

    b: dq 7.89   ;length of side b 

    ang: dq 1.5  ;opposite angle to side c (around 85.94 degrees) 

  

section .bss 

    c: resq 1    ;the result ‒ length of side c 

  

section .text 

    _start: 

  

    fld qword [a]   ;load a into st0 

    fmul st0, st0   ;st0 = a * a = a^2 

  

    fld qword [b]   ;load b into st1 

    fmul st1, st1   ;st1 = b * b = b^2 

  

    fadd st0, st1   ;st0 = a^2 + b^2 

  

    fld qword [ang] ;load angle into st0 

    fcos            ;st0 = cos(ang) 

  

    fmul qword [a]  ;st0 = cos(ang) * a 

    fmul qword [b]  ;st0 = cos(ang) * a * b 

    fadd st0, st0   ;st0 = cos(ang) * a * b + cos(ang) * a * b = 2(cos(ang) * a * b) 

  

    fsubp st1, st0  ;st1 = st1 - st0 = (a^2 + b^2) - (2 * a * b * cos(ang)) 

                    ;and pop st0 

  

    fsqrt           ;take square root of st0 = c 

  

    fst qword [c]   ;store st0 in c ‒ and we're done! 

  

    ;end program 

Floating-Point Instruction Set 

You may notice that some of the instructions below differ from another in name by just one letter: 
a P appended to the end. This suffix signifies that in addition to performing the normal operation, they 
also Pop the x87 stack after execution is complete. 

Original 8087 instructions 

F2XM1, FABS, FADD, FADDP, FBLD, FBSTP, FCHS, FCLEX, FCOM, FCOMP, FCOMPP, FDECSTP, 
FDISI, FDIV, FDIVP, FDIVR, FDIVRP, FENI, FFREE, FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FILD, 
FIMUL, FINCSTP, FINIT, FIST, FISTP, FISUB, FISUBR, FLD, FLD1, FLDCW, FLDENV, FLDENVW, 
FLDL2E, FLDL2T, FLDLG2, FLDLN2, FLDPI, FLDZ, FMUL, FMULP, FNCLEX, FNDISI, FNENI, FNINIT, 
FNOP, FNSAVE, FNSAVEW, FNSTCW, FNSTENV, FNSTENVW, FNSTSW, FPATAN, FPREM, FPTAN, 
FRNDINT, FRSTOR, FRSTORW, FSAVE, FSAVEW, FSCALE, FSQRT, FST, FSTCW, FSTENV, 
FSTENVW, FSTP, FSTSW, FSUB, FSUBP, FSUBR, FSUBRP, FTST, FWAIT, FXAM, FXCH, FXTRACT, 
FYL2X, FYL2XP1 
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Added in specific processors 

Added with 80287 

FSETPM 

Added with 80387 

FCOS, FLDENVD, FNSAVED, FNSTENVD, FPREM1, FRSTORD, FSAVED, FSIN, FSINCOS, 
FSTENVD, FUCOM, FUCOMP, FUCOMPP 

Added with Pentium Pro 

FCMOVB, FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, FCMOVU, FCOMI, 
FCOMIP, FUCOMI, FUCOMIP, FXRSTOR, FXSAVE 

Added with SSE 

FXRSTOR, FXSAVE 

These are also supported on later Pentium IIs which do not contain SSE support 

Added with SSE3 

FISTTP (x87 to integer conversion with truncation regardless of status word) 

Undocumented instructions 

FFREEP performs FFREE ST(i) and pop stack 
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x86 Disassembly 

Floating Point Numbers 

This page will talk about how floating point numbers are used in assembly language constructs. This 
page will not talk about new constructs, it will not explain what the FPU instructions do, how floating point 
numbers are stored or manipulated, or the differences in floating-point data representations. However, 
this page will demonstrate briefly how floating-point numbers are used in code and data structures that 
we have already considered. 

The x86 architecture does not have any registers specifically for floating point numbers, but it does have 
a special stack for them. The floating point stack is built directly into the processor, and has access 
speeds similar to those of ordinary registers. Notice that the FPU stack is not the same as the regular 
system stack. 

Calling Conventions 

With the addition of the floating-point stack, there is an entirely new dimension for passing parameters 
and returning values. We will examine our calling conventions here, and see how they are affected by the 
presence of floating-point numbers. These are the functions that we will be assembling, using both GCC, 
and cl.exe: 

 __cdecl double MyFunction1(double x, double y, float z) 

 { 

  return (x + 1.0) * (y + 2.0) * (z + 3.0); 

 } 

  

 __fastcall double MyFunction2(double x, double y, float z) 

 { 

  return (x + 1.0) * (y + 2.0) * (z + 3.0); 

 } 

  

 __stdcall double MyFunction3(double x, double y, float z) 

 { 

  return (x + 1.0) * (y + 2.0) * (z + 3.0); 

 } 

 

 

cl.exe doesn't use these directives, so to create these functions, 3 different files need to be 

created, compiled with the /Gd, /Gr, and /Gz options, respectively. 
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CDECL 

Here is the cl.exe assembly listing for MyFunction1: 

 PUBLIC _MyFunction1 

 PUBLIC __real@3ff0000000000000 

 PUBLIC __real@4000000000000000 

 PUBLIC __real@4008000000000000 

 EXTRN __fltused:NEAR 

 ; COMDAT __real@3ff0000000000000 

 CONST SEGMENT 

 __real@3ff0000000000000 DQ 03ff0000000000000r ; 1 

 CONST ENDS 

 ; COMDAT __real@4000000000000000 

 CONST SEGMENT 

 __real@4000000000000000 DQ 04000000000000000r ; 2 

 CONST ENDS 

 ; COMDAT __real@4008000000000000 

 CONST SEGMENT 

 __real@4008000000000000 DQ 04008000000000000r ; 3 

 CONST ENDS 

 _TEXT SEGMENT 

 _x$ = 8       ; size = 8 

 _y$ = 16      ; size = 8 

 _z$ = 24      ; size = 4 

 _MyFunction1 PROC NEAR 

 ; Line 2 

  push ebp 

  mov ebp, esp 

 ; Line 3 

  fld QWORD PTR _x$[ebp] 

  fadd QWORD PTR __real@3ff0000000000000 

  fld QWORD PTR _y$[ebp] 

  fadd QWORD PTR __real@4000000000000000 

  fmulp ST(1), ST(0) 

  fld DWORD PTR _z$[ebp] 

  fadd QWORD PTR __real@4008000000000000 

  fmulp ST(1), ST(0) 

 ; Line 4 

  pop ebp 

  ret 0 

 _MyFunction1 ENDP 

 _TEXT ENDS 

Our first question is this: are the parameters passed on the stack, or on the floating-point register stack, 
or some place different entirely? Key to this question, and to this function is a knowledge of 
what fld and fstp do. fld (Floating-point Load) pushes a floating point value onto the FPU stack, while 
fstp (Floating-Point Store and Pop) moves a floating point value from ST0 to the specified location, and 
then pops the value from ST0 off the stack entirely. Remember that double values in cl.exe are treated 
as 8-byte storage locations (QWORD), while floats are only stored as 4-byte quantities (DWORD). It is 
also important to remember that floating point numbers are not stored in a human-readable form in 
memory, even if the reader has a solid knowledge of binary. Remember, these aren't integers. 
Unfortunately, the exact format of floating point numbers is well beyond the scope of this chapter. 

x is offset +8, y is offset +16, and z is offset +24 from ebp. Therefore, z is pushed first, x is pushed last, 
and the parameters are passed right-to-left on the regular stack not the floating point stack. To 
understand how a value is returned however, we need to understand what fmulp does. fmulp is the 
"Floating-Point Multiply and Pop" instruction. It performs the instructions: 

ST1 := ST1 * ST0 

FPU POP ST0 

This multiplies ST(1) and ST(0) and stores the result in ST(1). Then, ST(0) is marked empty and stack 
pointer is incremented. Thus, contents of ST(1) are on the top of the stack. So the top 2 values are 
multiplied together, and the result is stored on the top of the stack. Therefore, in our instruction above, 



"fmulp ST(1), ST(0)", which is also the last instruction of the function, we can see that the last result is 
stored in ST0. Therefore, floating point parameters are passed on the regular stack, but floating point 
results are passed on the FPU stack. 

One final note is that MyFunction2 cleans its own stack, as referenced by the ret 20 command at the end 
of the listing. Because none of the parameters were passed in registers, this function appears to be 
exactly what we would expect an STDCALL function would look like: parameters passed on the stack 
from right-to-left, and the function cleans its own stack. We will see below that this is actually a correct 
assumption. 

For comparison, here is the GCC listing: 

 LC1: 

  .long 0 

  .long 1073741824 

  .align 8 

 LC2: 

  .long 0 

  .long 1074266112 

 .globl _MyFunction1 

  .def _MyFunction1; .scl 2; .type 32; .endef 

 _MyFunction1: 

  pushl %ebp 

  movl %esp, %ebp 

  subl $16, %esp 

  fldl 8(%ebp) 

  fstpl -8(%ebp) 

  fldl 16(%ebp) 

  fstpl -16(%ebp) 

  fldl -8(%ebp) 

  fld1 

  faddp %st, %st(1) 

  fldl -16(%ebp) 

  fldl LC1 

  faddp %st, %st(1) 

  fmulp %st, %st(1) 

  flds 24(%ebp) 

  fldl LC2 

  faddp %st, %st(1) 

  fmulp %st, %st(1) 

  leave 

  ret 

  .align 8 

This is a very difficult listing, so we will step through it (albeit quickly). 16 bytes of extra space is allocated 
on the stack. Then, using a combination of fldl and fstpl instructions, the first 2 parameters are moved 
from offsets +8 and +16, to offsets -8 and -16 from ebp. Seems like a waste of time, but remember, 
optimizations are off. fld1 loads the floating point value 1.0 onto the FPU stack. faddp then adds the top 
of the stack (1.0), to the value in ST1 ([ebp - 8], originally [ebp + 8]). 

 

 

 

 

 

 

 

 

 



FASTCALL 

Here is the cl.exe listing for MyFunction2: 

 PUBLIC @MyFunction2@20 

 PUBLIC __real@3ff0000000000000 

 PUBLIC __real@4000000000000000 

 PUBLIC __real@4008000000000000 

 EXTRN __fltused:NEAR 

 ; COMDAT __real@3ff0000000000000 

 CONST SEGMENT 

 __real@3ff0000000000000 DQ 03ff0000000000000r ; 1 

 CONST ENDS 

 ; COMDAT __real@4000000000000000 

 CONST SEGMENT 

 __real@4000000000000000 DQ 04000000000000000r ; 2 

 CONST ENDS 

 ; COMDAT __real@4008000000000000 

 CONST SEGMENT 

 __real@4008000000000000 DQ 04008000000000000r ; 3 

 CONST ENDS 

 _TEXT SEGMENT 

 _x$ = 8       ; size = 8 

 _y$ = 16      ; size = 8 

 _z$ = 24      ; size = 4 

 @MyFunction2@20 PROC NEAR 

 ; Line 7 

  push ebp 

  mov ebp, esp 

 ; Line 8 

  fld QWORD PTR _x$[ebp] 

  fadd QWORD PTR __real@3ff0000000000000 

  fld QWORD PTR _y$[ebp] 

  fadd QWORD PTR __real@4000000000000000 

  fmulp ST(1), ST(0) 

  fld DWORD PTR _z$[ebp] 

  fadd QWORD PTR __real@4008000000000000 

  fmulp ST(1), ST(0) 

 ; Line 9 

  pop ebp 

  ret 20     ; 00000014H 

 @MyFunction2@20 ENDP 

 _TEXT ENDS 

We can see that this function is taking 20 bytes worth of parameters, because of the @20 decoration at 
the end of the function name. This makes sense, because the function is taking two double parameters 
(8 bytes each), and one float parameter (4 bytes each). This is a grand total of 20 bytes. We can notice 
at a first glance, without having to actually analyze or understand any of the code, that there is only one 
register being accessed here: ebp. This seems strange, considering that FASTCALL passes its regular 
32-bit arguments in registers. However, that is not the case here: all the floating-point parameters (even 
z, which is a 32-bit float) are passed on the stack. We know this, because by looking at the code, there is 
no other place where the parameters could be coming from. 

Notice also that fmulp is the last instruction performed again, as it was in the CDECL example. We can 
infer then, without investigating too deeply, that the result is passed at the top of the floating-point stack. 

Notice also that x (offset [ebp + 8]), y (offset [ebp + 16]) and z (offset [ebp + 24]) are pushed in reverse 
order: z is first, x is last. This means that floating point parameters are passed in right-to-left order, on the 
stack. This is exactly the same as CDECL code, although only because we are using floating-point 
values. 

 

 

 

 



Here is the GCC assembly listing for MyFunction2: 

  .align 8 

 LC5: 

  .long 0 

  .long 1073741824 

  .align 8 

 LC6: 

  .long 0 

  .long 1074266112 

 .globl @MyFunction2@20 

  .def @MyFunction2@20; .scl 2; .type 32; .endef 

 @MyFunction2@20: 

  pushl %ebp 

  movl %esp, %ebp 

  subl $16, %esp 

  fldl 8(%ebp) 

  fstpl -8(%ebp) 

  fldl 16(%ebp) 

  fstpl -16(%ebp) 

  fldl -8(%ebp) 

  fld1 

  faddp %st, %st(1) 

  fldl -16(%ebp) 

  fldl LC5 

  faddp %st, %st(1) 

  fmulp %st, %st(1) 

  flds 24(%ebp) 

  fldl LC6 

  faddp %st, %st(1) 

  fmulp %st, %st(1) 

  leave 

  ret $20 

This is a tricky piece of code, but luckily we don't need to read it very close to find what we are looking 
for. First off, notice that no other registers are accessed besides ebp. Again, GCC passes all floating 
point values (even the 32-bit float, z) on the stack. Also, the floating point result value is passed on the 
top of the floating point stack. 

We can see again that GCC is doing something strange at the beginning, taking the values on the stack 
from [ebp + 8] and [ebp + 16], and moving them to locations [ebp - 8] and [ebp - 16], respectively. 
Immediately after being moved, these values are loaded onto the floating point stack and arithmetic is 
performed. z isn't loaded till later, and isn't ever moved to [ebp - 24], despite the pattern. 

LC5 and LC6 are constant values, that most likely represent floating point values (because the numbers 
themselves, 1073741824 and 1074266112 don't make any sense in the context of our example 
functions. Notice though that both LC5 and LC6 contain two .long data items, for a total of 8 bytes of 
storage? They are therefore most definitely double values. 

 

 

 

 

 

 

 

 

 

 



STDCALL 

Here is the cl.exe listing for MyFunction3: 

 PUBLIC _MyFunction3@20 

 PUBLIC __real@3ff0000000000000 

 PUBLIC __real@4000000000000000 

 PUBLIC __real@4008000000000000 

 EXTRN __fltused:NEAR 

 ; COMDAT __real@3ff0000000000000 

 CONST SEGMENT 

 __real@3ff0000000000000 DQ 03ff0000000000000r ; 1 

 CONST ENDS 

 ; COMDAT __real@4000000000000000 

 CONST SEGMENT 

 __real@4000000000000000 DQ 04000000000000000r ; 2 

 CONST ENDS 

 ; COMDAT __real@4008000000000000 

 CONST SEGMENT 

 __real@4008000000000000 DQ 04008000000000000r ; 3 

 CONST ENDS 

 _TEXT SEGMENT 

 _x$ = 8      ; size = 8 

 _y$ = 16      ; size = 8 

 _z$ = 24      ; size = 4 

 _MyFunction3@20 PROC NEAR 

 ; Line 12 

  push ebp 

  mov ebp, esp 

 ; Line 13 

  fld QWORD PTR _x$[ebp] 

  fadd QWORD PTR __real@3ff0000000000000 

  fld QWORD PTR _y$[ebp] 

  fadd QWORD PTR __real@4000000000000000 

  fmulp ST(1), ST(0) 

  fld DWORD PTR _z$[ebp] 

  fadd QWORD PTR __real@4008000000000000 

  fmulp ST(1), ST(0) 

 ; Line 14 

  pop ebp 

  ret 20     ; 00000014H 

 _MyFunction3@20 ENDP 

 _TEXT ENDS 

 END 

x is the highest on the stack, and z is the lowest, therefore these parameters are passed from right-to-left. 
We can tell this because x has the smallest offset (offset [ebp + 8]), while z has the largest offset (offset 
[ebp + 24]). We see also from the final fmulp instruction that the return value is passed on the FPU stack. 
This function also cleans the stack itself, as noticed by the call 'ret 20. It is cleaning exactly 20 bytes off 
the stack which is, incidentally, the total amount that we passed to begin with. We can also notice that 
the implementation of this function looks exactly like the FASTCALL version of this function. This is true 
because FASTCALL only passes DWORD-sized parameters in registers, and floating point numbers do 
not qualify. This means that our assumption above was correct. 

 

 

 

 

 

 

 

 



Here is the GCC listing for MyFunction3: 

  .align 8 

 LC9: 

  .long 0 

  .long 1073741824 

  .align 8 

 LC10: 

  .long 0 

  .long 1074266112 

 .globl @MyFunction3@20 

  .def @MyFunction3@20; .scl 2; .type 32; .endef 

 @MyFunction3@20: 

  pushl %ebp 

  movl %esp, %ebp 

  subl $16, %esp 

  fldl 8(%ebp) 

  fstpl -8(%ebp) 

  fldl 16(%ebp) 

  fstpl -16(%ebp) 

  fldl -8(%ebp) 

  fld1 

  faddp %st, %st(1) 

  fldl -16(%ebp) 

  fldl LC9 

  faddp %st, %st(1) 

  fmulp %st, %st(1) 

  flds 24(%ebp) 

  fldl LC10 

  faddp %st, %st(1) 

  fmulp %st, %st(1) 

  leave 

  ret $20 

Here we can also see, after all the opening nonsense, that [ebp - 8] (originally [ebp + 8]) is value x, and 
that [ebp - 24] (originally [ebp - 24]) is value z. These parameters are therefore passed right-to-left. Also, 
we can deduce from the final fmulp instruction that the result is passed in ST0. Again, the STDCALL 
function cleans its own stack, as we would expect. 

Conclusions 

Floating point values are passed as parameters on the stack, and are passed on the FPU stack as 
results. Floating point values do not get put into the general-purpose integer registers (eax, ebx, etc...), 
so FASTCALL functions that only have floating point parameters collapse into STDCALL functions 
instead. double values are 8-bytes wide, and therefore will take up 8-bytes on the stack. float values 
however, are only 4-bytes wide. 

 

 


