
2/11/14 CS161 Spring 2014 1 1

Switching and Crossing

•  Topics
•  Terminology.
•  What hardware support is necessary to support

multiprogramming?
•  How does all this work on the MIPS?

•  Learning Objectives:
•  Be prepared to tackle Assignment 2!

Terminology

•  Thread switch: Changes from one thread of execution to another.
•  Does not require a change of protection domain.
•  Continue running in the same address space.
•  Can change threads in user mode or in supervisor mode.

•  Domain crossing: Changes the privilege at which the processor is
executing.
•  Can change from user to supervisor.
•  Can change from supervisor to user.
•  Requires a trap or return from trap.
•  Requires an address space change (either user to kernel or kernel to user)

•  Process switch: Changes from execution in one (user) process to
execution in another (user) process.
•  Requires two domain crossings + a thread switch in the kernel.

•  Context switch: usage varies
•  Sometimes used for either thread or process switch.
•  Sometimes used to mean only process switch.
•  Every once in a while used to mean domain crossing.

2/11/14 CS161 Spring 2014 2

User-Level Thread Switch (1)

2/11/14 CS161 Spring 2014 3

Kernel Address Space

User address space

User-Level Thread Switch (2)

2/11/14 CS161 Spring 2014 4

Kernel Address Space

User address space

Domain Crossing

2/11/14 CS161 Spring 2014 5

Kernel Address Space

User address space

trap

What Causes a Trap?

•  The thread requests a trap: System Call
•  Every system call requires a domain crossing.

•  The thread does something bad: Exception
•  E.g., Accessing invalid memory.

•  An external event happens: Interrupt
•  E.g., Timer goes off, disk operation completes, network packet

arrives, one processor pokes another.

•  Regardless of the cause, the kernel handles all traps.
•  A user process that causes a trap causes a domain crossing.
•  A trap that happens while the kernel is already running, does

not cause a domain crossing.

2/11/14 CS161 Spring 2014 6

What Does the Kernel do on a Trap?

•  The kernel has to find a stack on which to run.
•  If you were already in the kernel, the stack you use is the same as the one

on which you were running.
•  If you were running in userland, then you have to find a stack on which to

run.
•  Implication: every real* user level thread has a corresponding kernel stack.

•  Before doing anything else, the kernel has to save state
•  We’ll go through this in detail in a few slides.

•  Figure out what caused the trap.

•  Note: Whenever the kernel runs, it has the option of changing to
another thread.

* You can have purely user-level thread implementations; for now, those aren’t “real”

2/11/14 CS161 Spring 2014 7

Process Switch (1)

2/11/14 CS161 Spring 2014 8

Ready Running

trap

Process Switch (2)

2/11/14 CS161 Spring 2014 9

Running Ready

Summarize Process Switch

1.  Change protection domain (user to supervisor[kernel]).
2.  Change stacks: switch from using the user-level stack to

using a kernel stack.
3.  Save execution state (on kernel’s stack).
4.  Do kernel stuff
5.  Kernel thread switch
6.  Restore user-level execution state
7.  Change protection domain (from supervisor[kernel] to user)

2/11/14 CS161 Spring 2014 10

Intel Domain Crossing

•  Hardware does it all
•  Saves and restores all the state using a special data

segment called the Task State Segment.

•  Software assist alternative (used by most modern
systems)
•  A cross-protection ring function call saves the EIP

(instruction pointer), the EFLAGS (contains user/kernel bit),
and code segment (CS) on the stack and saves old value of
stack pointer and stack segment.

•  Software does the rest.

2/11/14 CS161 Spring 2014 11

MIPS Domain Crossing

•  The PC is saved into a special supervisor register.
•  The status and cause registers (two other special

purpose registers) are set to reflect the details of the
trap being processed.

•  The processor switches into kernel mode with
interrupts disabled.

•  The rest is done in software.

2/11/14 CS161 Spring 2014 12

MIPS R3000 Hardware

•  Update status register (CP0 $12) with bits that:
•  turn off interrupts
•  put processor in supervisor mode
•  indicate prior state (interrupts on/off; user/supervisor mode)

•  Sets cause register (CP0 $13) with
•  what trap happened
•  bit indicating if you are in a branch delay slot

•  Sets the exception PC (CP0 $14) (address where
execution is to resume after we handle the trap)

•  Sets the PC to the address of the appropriate
handler.

2/11/14 CS161 Spring 2014 13

MIPS R3000 Software

•  Save whatever other state that must be saved!
•  Since you need to be able to save the user registers and

you need to manipulate various entries, there are two
registers that the kernel is allowed to use in whatever way
is necessary (without this, you couldn’t do anything).

•  In assembly (kern/arch/mips/locore/exception-mips1.S)
•  Save the previous stack pointer
•  Get the status register
•  If we were in user mode:

•  Find the appropriate kernel stack
•  Get the cause of the current trap
•  Create a trap frame (on the kernel stack) that will contain

•  General registers
•  Special registers (status, cause)

•  Now, call the trap handling code (in C).

2/11/14 CS161 Spring 2014 14

MIPS R3000 Trap Handling

•  First we go to a generic trap handler:
•  kern/arch/mips/locore/trap.c:

•  Does a bunch of error handling
•  If this was an interrupt, handle it.
•  If this was a system call, call the system call dispatch.
•  Otherwise, handle other exception cases.!

•  Then, if this is a system call (215), we go to the
system call handler:
•  kern/arch/mips/syscall/syscall.c!

•  Figure out which system call is needed and dispatch to it.

•  Both of these functions assume that all the important
information has been stashed away in a trapframe.

2/11/14 CS161 Spring 2014 15

K1

Normal Execution (1)

2/11/14 CS161 Spring 2014 16

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

PC and SP
reference
addresses in
user space.

K1

Trap Happens (2)

2/11/14 CS161 Spring 2014 17

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

HW sets:
Exception PC
C0P0 $12/13
get context
and status

K1

kern/arch/mips/locore/exception-mips1.S(3)
line 105-107

2/11/14 CS161 Spring 2014 18

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Save status
register to k0
Check mode

status

K1

kern/arch/mips/locore/exception-mips1.S(4)
line 111 (assume we came from user mode)

2/11/14 CS161 Spring 2014 19

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Save context
register into K1

status

context

K1

kern/arch/mips/locore/exception-mips1.S(5)
line 112-114 (find kernel stack)

2/11/14 CS161 Spring 2014 20

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Extract proc # K1
Convert to index
Set K0 to base of
Kernel stacks

context

K1

kern/arch/mips/locore/exception-mips1.S(6)
line 115 (find kernel stack)

2/11/14 CS161 Spring 2014 21

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Add K1 to K0 so
that K0 points to
the stack for the
current processor

context

K1

kern/arch/mips/locore/exception-mips1.S(7)
line 116 (save user SP)

2/11/14 CS161 Spring 2014 22

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Save old SP in K1

K1

kern/arch/mips/locore/exception-mips1.S(8)
line 117 (set SP to kernel stack)

2/11/14 CS161 Spring 2014 23

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Set SP to kernel
stack (we now
have a place to
store things!)

K1

kern/arch/mips/locore/exception-mips1.S(9)
line 137 (create a stack frame)

2/11/14 CS161 Spring 2014 24

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Allocate trap stack
frame (bump SP)

K1

kern/arch/mips/locore/exception-mips1.S(10)
line 170-233 (save registers)

2/11/14 CS161 Spring 2014 25

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Copy all our
registers onto the
stack

K1

kern/arch/mips/locore/trap.c(11)
line 125: We called into mips_trap

2/11/14 CS161 Spring 2014 26

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Trapframe on the
stack is the
argument to
mips_trap. Call it.

K1

kern/arch/mips/locore/trap.c(12)
line 431-433: Call routine for this exception

2/11/14 CS161 Spring 2014 27

Stack

U
se

r P
ro

ce
ss

 A
dd

re
ss

 S
pa

ce

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

Stack

K
er

ne
l A

dd
re

ss
 S

pa
ce

Stack

Stack

Interrupt
handlers

K0

status

context

SW:
Extract exception
type from the
trap frame.

Handling the Syscall (Dispatch)
kern/arch/mips/syscall.c!

void !
syscall(struct trapframe *tf)!
{ !
 int callno;!
 int32_t retval;!
 int err;!
 !
 KASSERT(curthread != NULL);!
 KASSERT(curthread->t_curspl == 0);!
 KASSERT(curthread->t_iplhigh_count == 0);!
!
 callno = tf->tf_v0;!
 !
 retval = 0;!
!
 switch (callno) {!
 case SYS_reboot:!
 err = sys_reboot(tf->tf_a0);!
 break;!
 !
 case SYS___time:!
 err = sys___time((userptr_t)tf->tf_a0,!
 (userptr_t)tf->tf_a1);!
 break;!
!
 /* Add stuff here */!
!

2/11/14 CS161 Spring 2014 28

Handling the Syscall (Error handling)
kern/arch/mips/syscall.c

 if (err) {!
 /*!
 * Return the error code. This gets converted at!
 * userlevel to a return value of -1 and the error!
 * code in errno.!
 */!
 tf->tf_v0 = err;!
 tf->tf_a3 = 1; /* signal an error */!
 }!
 else {!
 /* Success. */!
 tf->tf_v0 = retval;!
 tf->tf_a3 = 0; /* signal no error */!
 }!
!
 /*!
 * Now, advance the program counter, to avoid restarting!
 * the syscall over and over again.!
 */!
!
 tf->tf_epc += 4;!
!
 /* Make sure the syscall code didn't forget to lower spl */!
 KASSERT(curthread->t_curspl == 0);!
 /* ...or leak any spinlocks */!
 KASSERT(curthread->t_iplhigh_count == 0);!
!

2/11/14 CS161 Spring 2014 29

Syscall Details

•  Upon entry into our syscall handler, we:
•  Are in supervisor mode
•  Have saved away the process’s state

•  System call details
•  Where did we leave the arguments?
•  How do we know which system call to execute?
•  Where do we return an error?

•  Do we need to do anything special with the
arguments?
•  Where does data referenced by an argument live?
•  How do we get to it?

2/11/14 CS161 Spring 2014 30

Syscall Details

•  Upon entry into our syscall handler, we:
•  Are in supervisor mode
•  Have saved away the process’s state

•  System call details
•  Where did we leave the arguments?
•  How do we know which system call to execute?
•  Where do we return an error?

•  Do we need to do anything special with the
arguments?
•  Where does data referenced by an argument live?
•  How do we get to it?

2/11/14 CS161 Spring 2014 31

First four are
in a0-a3;
rest are on
the stack.

Syscall Details

•  Upon entry into our syscall handler, we:
•  Are in supervisor mode
•  Have saved away the process’s state

•  System call details
•  Where did we leave the arguments?
•  How do we know which system call to execute?
•  Where do we return an error?

•  Do we need to do anything special with the
arguments?
•  Where does data referenced by an argument live?
•  How do we get to it?

2/11/14 CS161 Spring 2014 32

Syscall
is in v0

Syscall Details

•  Upon entry into our syscall handler, we:
•  Are in supervisor mode
•  Have saved away the process’s state

•  System call details
•  Where did we leave the arguments?
•  How do we know which system call to execute?
•  Where do we return an error?

•  Do we need to do anything special with the
arguments?
•  Where does data referenced by an argument live?
•  How do we get to it?

2/11/14 CS161 Spring 2014 33

A3 indicates
success/failure;
v0 contains errno

Copyin/Copyout

•  Processes that issue system calls with pointer arguments
pose two problems:
•  The items referenced reside in the process address space.
•  Those pointers could be bad addresses.

•  Most kernels have some pair of routines that perform both
of these functions.

•  In OS/161 they are called: copyin, copyout
•  Copyin: verifies that the pointer is valid and then copies data

from a user process address space into the kernel’s address
space.

•  Copyout: verifies that the address provided by the user process
is valid and then copies data from the kernel back into a user
process.

2/11/14 CS161 Spring 2014 34

Creating User Processes

•  Once we have one user process, creating new ones
is easy: fork:
•  OS makes sure forking process is not running at user-level

•  That is, if the process is multi-threaded, no other threads are currently
active. (Why?)

•  Save all state from forking process.
•  Make a copy of the code, data, and stack.
•  Copy trap frame of the original process into the new one.
•  Make the new process known to the dispatcher.

•  Exec:
•  replace the current program image with the code and data of

a new program.

2/11/14 CS161 Spring 2014 35

