
Tutorial 11

Interrupts

1

Interrupts and Exceptions

2

What is it?

“A signal from hardware or software, such as
a keystroke, that demands immediate
attention and takes priority over other
operations”

• Analogy:
▫ Alarm clock
▫ Pain

What Causes It?
• Interrupts

▫ External to the CPU

▫ Peripheral: I/O: mouse move/click, keyboard, timer

• Exceptions

▫ Internal to the CPU

▫ Exceptions: Processor detected:

 Fault: restart from the causing instruction (e.g., page fault)

 Trap: restart from the next instruction (e.g., overflow)

 Abort: cannot restart (double fault)

• Programmed Exceptions (“software interrupts”):

▫ e.g.: INT3, INT21, INT n

• The terms “interrupts” & “exceptions” are frequently
intermixed

3

How Does It Work?

• Internal interrupts: handled completely by CPU + SW

• External interrupt involves CPU + SW + peripherals
▫ External device delivers “INTR” signal (or NMI, SMI)

▫ CPU acknowledges with “INTA” bus cycle

▫ Device sends interrupt# on Data bus

▫ Usually requires a PIC (Programmable Interrupt Controller) in
system

4

Signal

Intr

Data

Nmi,..

DEVICE PIC CPU

IntA

Additional Players
• Flags

▫ Interrupt Flag EFLAGS.IF flag: masks external interrupts
 Set/Clear by STI/CLI instructions

▫ Trap Flag EFLAGS.TF flag: is the CPU in TRAP mode (single-
step)
 Set/Clear by EFLAGS manipulation

▫ Resume Flag EFLAGS.RF flag: when set disables debug-
exception

• Instruction
▫ IRET: “return from interrupt” = RET + few more things
▫ Software interrupts: INT n, INT3, INTO (4), BOUND

(interrupt 5)
• Signals (for external interrupts)

▫ INTR: interrupt request
▫ INTA: interrupt acknowledge (bus cycle) = IO#*C*R#
▫ Data Bus: pass interrupt #
▫ NMI, SMI: additional interrupt lines
 NMI - non maskable (timer, power fail)
 SMI - system management (OS independent power

management)

5

Interrupt Handling

• Hardware side

▫ Ensure transparency to the affected task

 Will return to the point of interruption w/ the right flags

 Does the minimum - only what software cannot do!

• Interrupt handlers

▫ Transparent: preserve all used registers!

▫ Short as possible. If cannot - enable interrupts during handling

 Do not disable interrupts for a long time!

▫ Avoid nesting of same interrupts, or make sure the software can
handle that!

▫ Some of the information can/should be extracted from the
Stack
(old CS:EIP, old SS:ESP, EFLAGS, error code)

• Interrupt handler writers must fully understand the
relevant HW interaction (PIC + actual peripheral)

6

Exception and Interrupt Vectors
• Each exception and interrupt is associated with an identification

number, called a vector.
▫ Vectors 0-31 are assigned to the exceptions and NMI interrupt
 9,15,20-31 – Intel Reserved

▫ Vectors 32-255 are designated and user defined interrupts.

• Exception Classification
▫ Fault
 An exception that can generally be corrected and then, once

corrected, allows the program to be restarted with no loss of
continuity

▫ Trap
 An exception that is reported immediately following the execution

of the trapping instruction. Traps allow execution of a program or
task to be continued without loss of program continuity

▫ Abort
 An exception that does not always report the precise location of the

instruction causing the execution and does not allow restart of the
program or task that caused the execution

7

Protected-Mode Exceptions

No.

Mne-
monic Description Type

Error

Code Source

0

1

2

3

4

5

6

7

8

10

11

12

13

14

16

17

18

19

#DE

#DB

-

#BP

#OF

#BR

#UD

#NM

#DF

#TS

#NP

#SS

#GP

#PF

#MF

#AC

#MC

#XF

Divide by Zero

Debug

NMI Interrupt

Breakpoint

Overflow

BOUND Range Exceeded

Invalid Opcode

Device Not available

Double Fault

Invalid TSS

Segment Not Present

Stack-Segment Fault

General Protection Fault

Page Fault

Floating-Point Error

Alignment Check

Machine Check

Streaming SIMD Extensions

Fault

Fault/Trap

Interrupt

Trap

Trap

Fault

Fault

Fault

Abort

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Abort

Fault

No

No

No

No

No

No

No

No

Yes (Zero)

Yes

Yes

Yes

Yes

Yes

No

Yes (Zero)

No

No

DIV / IDIV instructions

DR conditions / INT1 instruction.

Nonmaskable external interrupt

INT3 instruction

INTO instruction

BOUND instruction

UD2 instruction / reserved opcode

FP or WAIT/FWAIT instructions

Any exception, interrupt, NMI

Task switch or TSS access

Loading SR / accessing system segment

Stack operations / SS register loads

Memory references / protection checks

Any memory reference

FP or WAIT/FWAIT instructions

Any data reference in memory

Model dependent

SIMD floating-point instructions

8

Exceptions and Interrupts Priority
Priority Descriptions

1 (Highest) Hardware Reset and Machine Checks

2 Trap on Task Switch

3 External Hardware Interventions

-FLUSH, STOPCLK, SMI, INIT

4 Traps on the Previous Instruction

- Breakpoints, Debug Traps

5 External Interrupts

- NMI, Maskable Hardware Interrupts

6 Faults from Fetching Next Instruction

- Code breakpoint, code-segment violation, Code page fault

7 Faults from Decoding the Next Instruction

- Instruction length > 15, illegal Opcode

8 (Lowest) Faults on Executing an Instruction

9

Interrupt Descriptor Table

• Interrupt Descriptor Table (IDT)
▫ Located in virtual memory
▫ Each entry contains 8-bytes

Interrupt Descriptor
• Interrupt Descriptor Table

Register (IDTR)
▫ Contains:
 IDT Linear Base Address
 IDT Limit in bytes, max 0xFFFF

• Operating System loads IDTR by
executing LIDT instruction
▫ LIDT is a privilege instruction
▫ Can be executed only in ring0

• One can observe IDTR by
performing SIDT instruction
▫ SIDT can be executed in any

privilege level

IDT LimitIDT Base Address

Gate for

Interrupt #1

Gate for

Interrupt #n

Gate for

Interrupt #3

Gate for

Interrupt #2

Interrupt

Descriptor Table (IDT)

031

0

8

16

(n-1)*8

IDTR Register
0151647

+

10

IDT Descriptors

Segment Selector Offset 15..0

Offset 31..16 P

D

P

L

0 D 1 1 1 0 0 0

Trap gate

Interrupt Gate

01631

TSS Segment Selector

Task gate

15

01631 15

D

P

L

1413

P 0 0 1 0 1

12 8 7

01631 15

01631 15

01631 15 1413 12 8 7 45

01631 15 1413 12 8 7 45

Segment Selector Offset 15..0

Offset 31..16 P

D

P

L

0 D 1 1 0 0 0 0

11

Linux IDT - Example

12

Interrupt Procedure Call

13

Interrupt or

Trap Gate

Interrupt

Vector

IDT

Segment

Descriptor

Segment Selector

GDT or LDT

Interrupt

Procedure

+
Offset

Base

Address

Destination

Code Segment

Stack Usage on Interrupt Transfer

EFLAGS

CS

EIP

Error Code

ESP Before

Transfer to Handler

ESP After

Transfer to Handler

SS

EFLAGS

CS

EIP

Error Code

ESP

Handler’s Stack
Interrupted Procedure’s

Stack

ESP Before

Transfer to Handler

ESP After

Transfer to Handler

Stack Usage with Privilege-Level Change

Stack Usage with No Privilege-Level Change

Interrupted Procedure’s

and Handler’s Stack

14

Exception Error Codes

E

X

T

I

D

T

T

I

31 01231516

Segment Selector Index

P

R

/

W

U

/

S

31 01234

R

S

V

D

Reserved Bits Violation (1)

System (0) or user (1) code

Read (0) or Write (1) operation

Nonpresent page (0) or page-level protection violation (1)

Page-Fault Error Code

Index refers to descriptor in GDT (0) or LDT (1)

Index refers to descriptor in IDT (1) or GDT/LDT (0)

External (1) or internal (0) event

General Error Code

15

Interrupt and Exception Classes
Class Vector Number Description

Benign Exception and Interrupts 1

2

3

4

5

6

7

9

16

17

18

19

All

All

Debug Exception

NMI Interrupt

Breakpoint

Overflow

BOUND Range Exceeded

Invalid Opcode

Device Not Available

Coprocessor Segment Overrun

Floating-Point Error

Alignment Check

Machine Check

SIMD floating-point extensions

Software Interrupts INT n

External Interrupts INTR

Contributory Exceptions 0

10

11

12

13

Divide Error

Invalid TSS

Segment Not Present

Stack Fault

General Protection

Page Faults 14 Page Fault
16

Conditions for Generating a Double Fault

First Exception Second Exception

Benign Contributory Page Fault

Benign Handle Exceptions

Serially

Handle Exceptions

Serially

Handle Exceptions

Serially

Contributory Handle Exceptions

Serially

Generate a Double
Fault

Handle Exceptions

Serially

Page Fault Handle Exceptions

Serially

Generate a Double
Fault

Generate a Double
Fault

17

Triple Fault and Shutdown State

• Triple fault is a case when another exception occurs
while attempting to call the double-fault handler, the
processor enters shutdown mode.

• Shutdown mode is similar to the state following
execution of an HLT instruction.

• In this mode the processor stops executing instructions
until an NMI interrupt, SMI interrupt, hardware reset,
or INIT# is received.

18

19

System Architecture
Summary

20

EFLAGS Register

Task Register

Control Registers

Physical Address

Linear Address

Segment Selector

Register

GDTR

Seg. Descriptor

Seg. Descriptor

TSS Descriptor

Global Descriptor

Table (GDT)

TSS Descriptor

LDT Descriptor

Interrupt Gate

Task Gate

Trap Gate

Interrupt Descriptor

Table (IDT)

Interrupt

Vector

IDTR

Call-Gate Segment

Selector

Seg. Descriptor

Local Descriptor

Table (LDT)

Call Gate

LDTR

Code

Stack

Exception Handler

Current

TSS

Code

Stack

Protected Procedure

Current

TSS

Code, Data or

Stack Segment

Code

Data

Stack

Task-State

Segment (TSS) Task

Code

Data

Stack

Task-State

Segment (TSS) Task

Code

Stack

Interrupt Handler

Current

TSS

21

Linear Address Computation

• Protected Mode

Linear address =

Descriptor_Table[f(segment)].base + offset

21

Seg.Selector Offset
Logical

Address

031015

Segment

Descriptor

Descriptor Table

Linear Address

031

+
Base Address

22

Page Translation Mechanism

Linear Address Space

Linear Address

Page Dir Entry

CR3

Page Directory

Page Table Entry

Page Table

Physical Address

Page

Linear Address

Dir Table Offset

01112212231

Linear Address

Accessing a Code Segment Through a Call Gate

23

Segment Selector

Offset

Offset

Descriptor Table

Call-Gate

Descriptor

Segment Selector Offset

Required but not used by processor

Far Pointer to Call Gate

Base

Base Base Code-Segment

Descriptor+

Procedure

Entry Point

Interrupt Procedure Call

24

Interrupt or

Trap Gate

Interrupt

Vector

IDT

Segment

Descriptor

Segment Selector

GDT or LDT

Interrupt

Procedure

+
Offset

Base

Address

Destination

Code Segment

Inter Level Call - Stack Switching
• On inter-level call: CPL changes, Control transferred, Stack switched
• Stack Switch

▫ New (privileged) SS:ESP is taken from the TSS
▫ Old SS:ESP is stored on new stack
▫ Parameters are copied to new stack

XYZ

Parameter 1

Parameter 2

Parameter 3

Calling SS

Calling ESP

Parameter 1

Parameter 2

Parameter 3

Calling CS

Calling EIP

ESP
3

ESP
0

XYZ ESP
3

Calling Procedure’s Stack

Before Call

Called Procedure’s Stack

Before Return

Calling Procedure’s Stack

After Return

(far RETn n = 3)SS
0
:ESP

0

from TSS

Unique for interlevel calls

25

Stack Usage on Interrupt Transfer

EFLAGS

CS

EIP

Error Code

ESP Before

Transfer to Handler

ESP After

Transfer to Handler

SS

EFLAGS

CS

EIP

Error Code

ESP

Handler’s Stack
Interrupted Procedure’s

Stack

ESP Before

Transfer to Handler

ESP After

Transfer to Handler

Stack Usage with Privilege-Level Change

Stack Usage with No Privilege-Level Change

Interrupted Procedure’s

and Handler’s Stack

26

