flags and conditional jumps

by Jeremy Gordon jg@jgnet.co.uk
Thisfileisintended for those interested in 32 bit assembler programming, in particular for Windows.

The "flags" are each one bit of memory containetthiwithe processor itself. Since each flag is amg bit it is
either 1 or O ("set" or "clear") at any one timéefe are six flags which are used to indicate éselt of certain
instructions. Some instructions such as CMP, TESTRII only alter some of these flags and do notkisg.
Other instructions carry out other operations lgt alter some of the flags. Some instructionstdater the
flags at all. When looking at each mnemonicrimeemonic manual will tell you which flags are changed by
which instructions (not yet available).

A common use for the flags is to divert executiomtparticular part of code using the conditionahfp
instructions. These instructions will jump or wilbt jump depending on the state of one or moréeflags.
Only five of the flags can be used in this wayrozeign, carry, overflow and parity. The sixthgfl@uxiliary
carry) and seventh flag (direction flag) are regather instructions. Here is more information attbe five
flags which can be used by the conditional jumprirtdions:-

Z (zero Set if the result is zero. If after an arithmetistruction the number left in the register or meyramea which is the subject

flag) of the instruction is zero, then this flag is 2ften you just need to do a simple comparison ofwelues without
changing them. In that case you can use the ingiru€MP. CMP does a pretend SUB without actuaiignging the
values given to it as operands. For example:-

CMP EAX,33h ;set zero flag if eax=33h, but don 't change eax

SUB EAX,33h ;set zero flag if eax=33h (eax now 33h less)

CMP EAX,EDX ;set zero flag if eax=edx

CMP EAX,[VALUE] ;set zero flag if eax=the number i n VALUE

The zero flag can also be used to show the refaltount down or up, for example

DEC EAX ;set zero flag if eax is zero afte r instruction clear if not

INC EAX ;set zero flag if eax is zero afte r instruction clear if not

The zero flag can also be used to control the tepgeaf the string instructions ie. LODS, STOS an@VS
REPZ ;repeat the string instruction whi le zero flag is set

REPNZ ;repeat the string instruction whi le zero flag is not set

A return from an APl in Windows often indicatesttttze API has failed. So you will often need todhéor this event.
When testing registers you can use these altegsativ

CMP EAX,0 ;see if the number in eax is zero (zero flag set if so)

OR EAX,EAX ;this does exactly the same but us es 2 opcodes instead of 3
TEST EAX,EAX ;again this is the same and uses o nly 2 opcodes

The 16-bit and 8-bit versions of the instructioest tonly the first 16 or 8 bits of the registengmory area respectively,
for example

CMP W[DAVID],0 ;see if the first 16 bits of memor y labelled DAVID are zero
CMP B[SUE],0 ;see if the first 8 bits of memory labelled SUE are zero
OR DX,DX ;see if the dx register is zero (1 6-bit register)

TEST DH,DH ;see if the dh register is zero (8 -bit register)

SUB B[VALUE],2 ;reduce the 8 bits at VALUE by 2 (zero flag set if now zero)
DEC SI ;zero flag set when si is zero (16 -bit register)

INC B[COUNT] ;zero flag set when 8 bits at COUN T are zero

Since the flags are very useful when returning feoroutine to show whether the routine was sucaksshot you will
sometimes need to set them expressly. In ordesttihe zero flag you can use:-

CMP EAX,EAX ;setthe zero flag (no change to e ax)

SUB EAX,EAX ;set the zero flag (making eax=0 t 00)

CMP EAX,EDX ;when they must be different clear the zero flag
OR EAX,EAX ;when eax cannot be zero clear the zero flag

TEST EAX,EAX ;same effect as OR EAX,EAX

When used with TEST, the zero flag will be seh# bit being tested is zero.

MOV ECX,1 ;give ecx the value 1

TEST ECX,1 ;the zero flag is not set

CMP ECX,1 ;the zero flag is set

MOV EDX,0

TEST EDX,1 ;the zero flag is set

CMP EDX,1 ;the zero flag is not set

MOV EBX,-1

TEST EBX,-1 ;test all 32 bits - zero flag not set

CMP EBX,-1 ;see if ebx is -1 - zero flag set

The zero flag is mainly used with the JZ and JN#&ditoonal jump instructions for example:-
JZ>L10 ;jump forward to L10 if the zero f lag is set (to 1)

S(sign
flag)

JINZ L1 ;jump back to L1 if the zero flag is clear
The zero flag is also used in the JA (jump if apuB (jump if below) and similar conditional junimstructions.

It can also be used within loops using speciatisions or on its own, for example:-

L1:
;other code here
CMP EDX,EAX
LOOPZ L1 ;decrement ecx, continue to loop u ntil ecx=0
;or until edx=eax (when zero flag will be set)
;*******
L1:
;other code here
CMP EDX,EAX
LOOPNZ L1 ;decrement ecx, continue to loop u ntil ecx=0
;or until edx does not=eax (when z ero flag will be clear)
;*******
L1:
;other code here
CMP EDX,EAX
JZ>L10 ;jump out of loop when edx=eax (ze ro flag set)
LOOP L1 ;decrement ecx, continue to loop u ntil ecx=0
L10:
;*******
L1:
;other code here
CMP EDX,EAX
INZ L1 ;continue to loop until edx=eax (z ero flag set)

Set if the most significant bit (tHeftmost bit) of the result is 1. The position of this B&pends on the data size. In a byte
the most significant bit is bit 7 (8th bit of bligto 7); in a word it is bit 15 (16th bit of bitst@ 15) and in a dword it is bit
31 (32nd bit of bits 0 to 31). So this bit will bet if the result of the instruction is 80h or hegfffor a byte), 8000h or
higher (for a word) or 80000000h or higher (forveodd). Note that in signed numbers the most sigaift bit indicates
whether the number is negative or not.

The sign flag is altered by INC and DEC whereasctirey flag is not, so testing the sign flag isaftiseful in loops, for
example

LO:

DEC ECX ;reduce ecx by one

JNS LO ;loop back to LO if ecx is not yet -1
It can also be conveniently used in multi-actionctions for example:-
MULTI_ACTION: ;on entry al holds the action to t ake
DEC AL ;see if al held zero

JS>L0 yes

DEC AL ;see if al held one

JS>L1 yes

DEC AL ;see if al held two

JS>L2 yes

DEC AL ;see if al held three

JS>L3 yes

DEC AL ;see if al held four

JS>L4 yes

Using the sign flag is a convenient way to sekéefhigh bit of a register is set or cleared. A namdf instructions set the
flag without altering the register for example:-

OR EDX,EDX ;set the sign flag if the high bit of edx is set

CMP EDX,EDX ; -ditto -

TEST EDX,EDX ; -ditto -

OR CL,CL ;set the sign flag if the high bit of clis set

CMP CL,CL ;- ditto -

TEST CL,CL ;- ditto -

When checking areas of memory though, you can adiyess the memory once per instruction so you teeese CMP,
for example:-

CMP B[DATA44],0 ;set the sign flag if the 8th bit of DATA44 is set
CMP W[DATA44],0 ;set the sign flag if the 16t h bit of DATA44 is set
CMP D[DATAA44],0 ;set the sign flag if the 32n d bit of DATA44 is set
CMP B[DATA44+7],0 ;set the sign flag if the 64t h bit of DATA44 is set
CMP B[DATA44+9],0 ;set the sign flag if the 80t h bit of DATA44 is set

Note that the position of the high bit in the apémemory known as DATA44 which is used in thesgtrinctions
depends on the data size used in the instructiois.i§ because data in memory areas is storedémse-byte order, the
least significant byte first and the most signifitkst. See understand reverse storage. TheétistitCMP
B[DATA44+7],0 looks at the 8th byte which holds t#th bit. This is the sign but for a 64 bit daizes

The sign flag is mainly used with the JS and JN&litmnal jump instructions for example:-

JS >L10 ;jump forward to L10 if the sign f lag is set (to 1)
INS L1 ;jump back to L1 if the sign flag is clear
The sign flag is also used in the JG (jump if gee#lhan), ING (jump if not greater-than) and simglanditional jump
instructions.
C (carry Set if the result of the instruction has gone belythe limit of the data size (ie. a "carry”" hasuced). For example
flag) suppose in an 8 bit instruction the value of lddeal to 255. This can't make 256 since 255 is #ite lémit for a byte. So

the result will be 0, but the carry flag will bet.s8imilarly suppose in an instruction the valuel@$ subtracted from 2.
Again this causes the carry flag to be set bectheseesult has gone below zero which is the loweit bf the data size.
The carry flag therefore indicates that an overflag occurred when using unsigned numbers. Sefiawdiag for
finding oveflows when signed numbers are being used

Unlike other flags there are instructions which @esigned to manipulate the carry flag directly:-

STC ;set carry flag

CLC ;clear carry flag

CcMC ;complement carry flag

Since these instructions are so simple the caagyifl very useful to report the result of a functio its caller, for
example:-

CALCULATEZ2:

CMP EBX,ESI

JZ > fail ;jump to fail if ebx=esi

CMP EAX,ESI

JZ >.success ;jump to success if eax=esi

fail

STC ;set carry to show fail

RET

.success

CLC ;clear carry to show success

RET

CALCULATEL:

CALL CALCULATE2

JC >L40 ;jump forward to L40 if not succes sful

Note that INC and DEC do not alter the carry fldgr do the loop instructions. This is useful if yioave a loop which
needs to report its result using the carry flagefaample:-

.loop

CMP ESI,EDI ;see if esiis below edi (set carr y if s0)

DEC ECX ;see if any more loops to do

JNZ .loop yes

RET ;return with the result of cmp esi ,edi in the carry flag

There are some instructions which always cleac#uey flag. This is useful to know to avoid the déer CLC if you
want to clear the carry flag. These instructioresAXD, OR and TEST.
Some instructions respond to the carry flag astiopgive their output in the carry flag. See theemomics concerned.

The carry flag is mainly used with the JC and JN@ditional jump instructions for example:-

JC >L10 ;jump forward to L10 if the carry flag is set
JNC L1 ;jump back to L1 if the carry flag is clear

The carry flag is also used in the JA (jump if ad)p\B (jump if below) and similar conditional jurmstructions.

(0] To understand the overflow flag you need to undecsaibout signed numbers. The overflow flag is tséaddicate an
(overflow overflow when using signed numbers. The carry élagnot be used for this. A simple example suffiogsrove this:-

flag)

MOV AL,OFEh ;give al 254 decimal (unsigned) or -2 (signed)

ADD AL,4h ;add 4 - al now holds 2h

here the carry flag will be set because the unsigesult of 258 was too large for the data sizét loh255. But regarded
as a signed calculation, there was no overflow. vilee 2 now in al is the correct result of -2 FAe overflow flag is
clear.

Here is another example where thisran overflow in a signed calculation:-

MOV AL,7Fh ;give al 127 decimal

ADD AL,4h ;add 4 - al now holds 83h

here the carry flag is clear because the unsigemdtrof 131 is within the data size limit of 25t regarded as a signed
calculation, there was an overflow because if &d$83h this is the signed number -125 decimal ivische wrong
result. The correct result of 131 is outside tlyaad range of -127 to +128.

So in these type of arithmetic operations the @msoesets the overflow flag if the sign bit chanlgesthere is no "carry”.
This is independent of the carry flag as can ba &een:-

MOV AL,7Fh ;give al 127 decimal
INC AL ;cause overflow (carry unaffected by INC)

i\/IOV AL,80h ;give al -128 decimal
DEC AL ;cause overflow (carry unaffected by DEC)

In the shift instructionsnly for single shift operations does the overflow flag give a valid indication wier the signed
result is too large for the data size. For example:

MOV AL,80h ;give al -128

SHL AL,1 ;X2 cause overflow

MOV AL,OFEh ;give al -2

SHL AL,1 ;X2 result -4 no overflow

MOV AL,80h ;give al -128

SHL AL,2 ;x4 no overflow indicated
MOV AL,OFEh ;give al -2

SAR AL,1 :/2 result -1 no overflow

The SAR instruction is a special signed shift rigistruction which maintains the correct sign ie thesult. It does this by
shifting all the bitexcept the high bit. Because a single SAR shift is effety a divide by +2 it can never overflow. But
SHL can, and in single shift operations the overfitag is set appropriately. To achieve this, thecpssor tests to see if
the sign bit is the same as the carry flag and<léee overflow flag if it is. Because of this tasts possible to identify
another use for the overflow flag as followste these tests change the contents of the register):-

SHL AL,1

JNO >L1 ;jump if the highest two bits of a | were the same
SHL AL,1

JO >L1 ;jump if the highest two bits of a | were different
SHL EAX,1

JNO >L1 ;jump if the highest two bits of e ax were the same
SHL EAX,1

JO>L1 ;jump if the highest two bits of e ax were different

The rotate instructions work in the same way. StheeROR instruction shifts all bits to the rigaptacing the highest bit
with the lowest bit, this provides a way to compidwe highest bit and the lowest bit of data. Fa@megle (ote these tests
change the contents of the register):-

ROR AL,1

JNO >L1 ;jump if the lowest and highest bi ts of al were the same
ROR AL,1

JO>L1 ;jump if the lowest and highest bi ts of al were different
ROR EAX,1

JNO >L1 ;jump if the lowest and highest bi ts of eax were the same
ROR EAX,1

JO>L1 ;jump if the lowest and highest bi ts of eax were different

The special signed multiply instruction IMUL selte toverflow flag if the signed result is too lafgethe data size.
The overflow flag is mainly used with the JO anddJbbnditional jump instructions for example:-

JO >L10 ;jump forward to L10 if the overfl ow flag is set
JNO L1 ;jump back to L1 if the overflow f lag is clear

P (parity The parity flag indicates whether there are an eresdd number of bit set in the data. The paldy fs set if the number

flag) of bits set is even and cleared if it is odd. Irsde&ommunications, the parity bit is used as asophisticated error check.
After each byte is sent, the transmitter senmsity bit which tells the receiver whether the byte just sould have
been even or odd parity. This might miss a singheupted byte but does usually detect a seriesméipted ones. When
used in this way a byte may be less than 8 bibéts7plus a parity bit is often used for seriahsmissions.

The parity flag is mainly used with the JP and @§Rditional jump instructions for example:-

JP >L10 ;jump forward to L10 if the parity flag is set
JINP L1 ;jump back to L1 if the parity fla g is clear

The auxiliary carry flag is used in Binary Codedcipeal (BCD) arithmetic. Unlike the other flags tliiag is
not used to divert execution depending on wheth@obit is set. Instead it is set by one BCD instion and
then read by the next BCD instruction. For moreiinfation seeinder stand bed arithmetic. (Not yet
available).

Conditional jump instructions - unsigned

Instruction
Jz

JINZ

JC

JNC

JA

JNA

JP
JNP
JECXZ
JCXZ

Alternative
JE
JNE
JB or INAE
JNB or JAE

JNBE

JBE

Action
Jump if zero flag set (jump if equal)
Jump if zero flag not set (jump if not efjua
Jump if carry flag set (jump if "beloor not above or equal)
Jump if carry flag not set (jumpak "below" or above or equal)

Jump if neither carry flag or zero flag set (ianjuif "above" or if not
"below" or equal). See note for INA below.

Jump if either carry flag or zero flag set (ie. uih"not above" or if
"below" or equal). This is useful to check aftesudbtraction that a register
remains above 1. For example, you might use thigatective coding as
follows (where EDI is at the end of a string in BRER):-

MOV EDX,ADDR BUFFER

SUB EDI,EDX ;get length of string in EDI

JNA >.error ;length found to be negative or zero

Jump if parity flag set
Jump if parity flag not set
Jump if ECX=0

Jump if CX=0

Conditional jump instructions - signed

Instruction
JS

JINS

JO

JNO

JL

JNL

JLE

JLNE

Alternative

JIJNGE

JGE

ING

JG

Action
Jump if sign flag set (jump if signed numisemegative)
Jump if sign flag not set (jump if signed fnemis positive)
Jump if overflow flag set
Jump if overflow flag not set

Jump if sign and overflow flags are different (juihpless" or "not greater
or equal). This special test is necessary for rensibegarded as signed
because JA (jump if above) and JB (jump if beloandt work with such
numbers. For example if AL is 1 then CMP AL will not cause JB to jum
since the carry flag is not set. But JL will jumgdause (regarded as sign
-1 islessthan 1.

Jump if sign and overflow flags are the same (juiipot less" or "greater
or equal”). See note above for JL.

Jump if sign and overflow flags are different ardazflag is set (jump if
"less or equal” or "not greater")

Jump if sign and overflow flags are the same amd f#tag is clear (jump if
"not less or equal” or "greater")

Copyright © Jeremy Gordon 2002-2003

