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q,Heart of Standard PC Graphics 
The VGA is un ry  of computer graphics, for it is  by far  the most 

e closest we  may ever come to a linguaj-anca of 
computer graphics. standard has  even come close  to the 50,000,000 
or so VGAs in use t Ily every  PC compatible sold  today has full VGA 
compatibility built iq*. There  are, of course, a variety  of graphics accelerators that 
outperform  the  sta6dard VGA, and  indeed, it is becoming hard to find a plain va- 

t there is no standard  for accelerators, and every accelerator 

t if you write your programs for the VGA, you’ll  have the 
for your software. In  order  for graphics-based software to 
st perform well. Wringing the best performance  from  the 

VGA is no simple task, and it’s impossible unless you  really understand how the VGA 
works-unless you have the  internals down cold. This book is about PC graphics at 
many  levels, but high  performance is the  foundation  for all that is to come, so it is 
with the inner workings of the VGA that we will begin our exploration of PC graphics. 
The first eight  chapters of Part I1 is a guided  tour of the  heart of the VGA, after 
you’ve absorbed what  we’ll  cover in this and  the  next seven chapters, you’ll have the 
foundation  for  understanding just  about everything the VGA can do, including  the 
fabled Mode X and more. As you read  through these first chapters, please keep  in 
mind  that  the really exciting stuff-animation, 3-D, blurry-fast lines and circles and 
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polygons-has to wait until we have the  fundamentals out of the way. So hold on  and 
follow along, and before you  know it  the fireworks will be well underway. 
We’ll start our exploration with a quick overview  of the VGA, and  then we’ll  dive 
right in and  get  a taste of what the VGA can do. 

The VGA 
The VGA is the  baseline  adapter  for modern IBM  PC compatibles,  present in virtu- 
ally  every  PC sold today or in  the last  several  years. (Note  that  the VGA is often 
nothing  more  than  a  chip  on  a  motherboard, with some memory, a DAC, and maybe 
a  couple of glue chips; nonetheless, I’ll refer  to  it as an  adapter  from now on for 
simplicity.) It guarantees  that every PC is capable of documented resolutions up to 
640x480 (with 16 possible colors per  pixel) and 320x200 (with 256 colors per  pixel), 
as  well  as undocumented-but  nonetheless  thoroughly standard-resolutions up to 
360x480 in 256-color mode, as  we’ll see in  Chapters 31-34 and 4’7-49. In order  for  a 
video adapter  to claim VGA compatibility, it must support all the  features and code 
discussed in this book (with a very  few minor  exceptions  that I’ll note)-and my 
experience is that  just  about 100 percent of the video hardware currently  shipping 
or shipped since 1990 is in fact VGA compatible.  Therefore, VGA code will run  on 
nearly all of the 50,000,000 or so PC compatibles out  there, with the  exceptions 
being almost entirely  obsolete  machines  from  the 1980s. This makes good VGA code 
and VGA programming  expertise valuable commodities  indeed. 
Right off the  bat,  I’d like to make one  thing perfectly clear: The VGA is hard- 
sometimes very hard-to  program  for  good  performance.  Hard,  but  not 
impossible-and that’s why I like this odd  board. It’s a throwback to an earlier  gen- 
eration of micros, when inventive coding and  a solid understanding of the  hardware 
were the  best tools for  improving  performance. Increasingly, faster processors and 
powerful coprocessors are seen as the  solution  to  the sluggish  software produced by 
high-level languages and layers of interface and driver  code, and that’s surely a valid 
approach. However, there  are  tens of millions of VGAs installed  right now, in ma- 
chines  ranging  from &MHz  286s to 90-MHz Pentiums. What’s more, because the 
VGAs are generally 8- or at best  16-bit  devices, and because of display memory wait 
states,  a  faster processor isn’t  as much of a  help as  you’d expect. The  upshot is that 
only a  seasoned  performance  programmer who understands  the VGA through  and 
through can drive the  board  to its fullest potential. 
Throughout this book, I’ll explore  the VGA by selecting  a specific algorithm or fea- 
ture  and implementing  code  to  support  it on the VGA, examining aspects of the 
VGA architecture as they become  relevant. You’ll get  to see VGA features  in  context, 
where they are  more comprehensible  than  in IBM’s somewhat  arcane  documenta- 
tion, and you’ll get working code  to use or to  modify  to meet your needs. 
The prime directive of VGA programming is that there’s rarely just  one way to  pro- 
gram  the VGA for  a given purpose. Once you understand  the tools the VGA provides, 
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you’ll be  able to combine  them  to  generate  the  particular synergy your application 
needs. My VGA routines  are  not  intended to be  taken as gospel, or to show “best” 
implementations,  but  rather to start you  down the  road to understanding  the VGA. 
Let’s begin. 

An  Introduction  to VGA Programming 
Most discussions of the VGA start out with a  traditional “Here’s a block diagram of 
the VGA” approach, with  lists  of registers and statistics. I’ll get to that eventually, but 
you can  find it in IBM’s  VGA documentation  and several other books. Besides, it’s 
numbing to read specifications and explanations, and  the VGA is an exciting adapter, 
the  kind that makes  you  want to get your hands dirty probing  under  the  hood, to 
write some nifty code  just to see what the  board can do. What’s more,  the best way to 
understand  the VGA  is to see it work, so let’s jump right  into  a  sample of the VGA in 
action,  getting  a feel for  the VGA’s architecture in the process, 
Listing 23.1 is a  sample VGA program  that  pans  around  an  animated 16-color me- 
dium-resolution (640x350) playfield. There’s  a  lot  packed  into this code;  I’m  going 
to focus on  the VGA-specific aspects so we don’t  get sidetracked.  I’m not  going to 
explain how the ball is animated,  for  example; we’ll get  to  animation  starting  in 
Chapter 42. What I will do is cover each of the VGA features  used  in this program- 
the virtual screen, vertical and  horizontal  panning,  color  plane  manipulation, 
multi-plane block copying, and page flipping-at a  conceptual level, letting the  code 
itself demonstrate  the  implementation details. We’ll return  to many of these con- 
cepts  in more  depth later  in this book. 

At the Core 
A little background is  necessary before we’re  ready  to  examine  Listing 23.1. The VGA  is 
built around  four functional blocks,  named the CRT Controller (CRTC) , the Sequence 
Controller  (SC),  the  Attribute  Controller (AC) , and  the Graphics  Controller  (GC). 
The single-chip VGA could have been  designed to treat  the registers for all the blocks 
as one large set, addressed at one pair of 1/0 ports, but in the EGA, each of these  blocks 
was a  separate  chip, and  the legacy of EGA compatibility is  why each of these blocks 
has a  separate set of registers and is addressed  at  different I/O ports  in  the VGA. 
Each  of these blocks  has a sizable  complement of registers. It is not particularly  impor- 
tant that you understand why a given  block  has a given register; all the registers together 
make up  the  programming  interface,  and  it is the  entire  interface  that is  of interest 
to the VGA programmer. However, the means by which  most VGA registers are ad- 
dressed makes it necessary for you to  remember which registers are in which  blocks. 
Most  VGA registers are addressed as internally  indexed registers. The  internal address 
of the register is written to a given  block’s Index register, and  then  the  data  for  that 
register is written to the block’s Data register. For example, GC register 8, the Bit 

Bones and Sinew 427 



Mask register, is set to OFFH  by writing 8 to port SCEH, the GC lndex register, and 
then writing OFFH to port SCFH, the GC Data register. Internal  indexing makes it 
possible to  address  the 9 GC registers through only two ports, and allows the  entire 
VGA programming  interface  to  be  squeezed  into fewer than  a  dozen  ports. The 
downside is that two 1 / 0  operations  are  required  to access  most VGA registers. 
The ports used to  control  the VGA are shown in Table 23.1. The CRTC,  SC, and GC 
Data registers are  located at the addresses of their respective Index registers plus 
one. However, the AC Index  and Data registers are  located  at  the same address, 
3COH. The function of this port toggles on every OUT to 3COH, and resets to Index 
mode (in which the  Index  register is programmed by the  next OUT to 3COH) on 
every read  from  the Input Status 1 register (3DAH when the VGA is in a  color  mode, 
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3BAH in monochrome  modes). Note  that all CRTC registers are addressed at  either 
3DXH or 3BXH, the  former in color modes and  the latter in monochrome modes. 
This provides compatibility with the register addressing of the now-vanished Color/ 
Graphics Adapter  and  Monochrome Display Adapter. 
The  method used in the VGA BIOS  to set registers is to point DX to the desired 
Index register, load AL with the  index,  perform a byte OUT,  increment DX to point 
to the Data register (except in the case  of the AC, where DX remains the  same), load 
AL with the desired data, and  perform a byte OUT. A handy shortcut is to point DX 
to the desired Index register, load AL with the index, load AH with the data, and 
perform a word OUT. Since the high byte  of the OUT value  goes  to port DX+1 , this is 
equivalent  to the first method  but is faster.  However, this technique  does  not work for 
programming  the AC Index  and Data registers; both AC registers are addressed at 
3COH, so two separate byte OUTs must be used to program  the AC.  (Actually,  word 
OUTs to the AC do work in the EGA, but  not in the VGA, so they shouldn’t be used.) 
As mentioned above, you must be sure which mode-Index or Data-the  AC is in 
before you do  an OUT to 3COH; you can read  the  Input Status 1 register at any time 
to force the AC to Index  mode. 
How  safe is the word-OUT method of addressing VGA registers? I have, in the past, 
run  into  adapter/computer combinations that  had  trouble with word OUTs; how- 
ever,  all such problems I  am aware  of  have been fixed. Moreover, a  great  deal of 
graphics software now uses  word OUTs, so any computer  or VGA that doesn’t prop- 
erly support word OUTs could scarcely be considered  a  clone  at all. 

P A speed tip: The setting of each chip S Index register remains the  same  until it is 
reprogrammed. This means that in cases where you are setting  the  same internal 
register repeatedly, you can set the  Index register to point  to that internal register 
once,  then write to the Data register multiple times. For example,  the Bit Mask 
register (GC register 8) is often set repeatedly inside  a  loop when drawing lines. 
The standard code for this is: 

M O V  DX.03CEH ; p o i n t   t o  GC I n d e x   r e g i s t e r  
M O V  AL.8 
OUT 

; i n t e r n a l   i n d e x  o f  B i t  Mask r e g i s t e r  
DX ,AX ;AH c o n t a i n s   B i t  Mask r e g i s t e r   s e t t i n g  

Alternatively,  the GC Index register could initially be set to point  to the Bit Mask 
register with 

M O V  DX.03CEH : p o i n t   t o  G C  I n d e x   r e g i s t e r  
M O V  AL.8 ; i n t e r n a l   i n d e x  o f  B i t  Mask r e g i s t e r  
OUT DX.AL ; s e t  GC I n d e x   r e g i s t e r  
I N C  D X  : p o i n t   t o  GC D a t a   r e g i s t e r  

and then the  Bit  Mask register could be  set repeatedly with the byte-size OUT 
instruction 

OUT DX.AL :AL c o n t a i n s   B i t  Mask r e g i s t e r   s e t t i n g  
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which is generally faster (and never slower) than a word-sized OUT, and  which 
does not  require AH to be set, freeing up a register. Of course, this  method only 
works ifthe GC Index register remains  unchanged  throughout  the loop. 

Linear  Planes and True VGA Modes 
The VGA's memory is organized as four 64K planes. Each of these planes is a  linear 
bitmap; that is, each byte from  a given plane  controls eight adjacent pixels on  the 
screen, the  next byte controls the  next  eight pixels, and so on to the  end of the scan 
line. The  next byte then controls the first eight pixels of the  next scan line,  and so on 
to the  end of the screen. 
The VGA adds  a powerful twist to linear addressing; the logical  width  of the screen 
in VGA memory need  not be the same as the physical width of the display. The 
programmer is free to define all or  part of the VGA's large memory map as a logical 
screen of up to 4,080 pixels in width, and  then use the physical screen as a window 
onto any part of the logical screen. What's more, a virtual screen can have  any  logical 
height up to the capacity  of VGA memory. Such  a virtual screen  could be used to 
store  a  spreadsheet or a CAD/CAM drawing, for instance. As we  will see shortly, the 
VGA provides excellent hardware for moving around  the virtual screen; taken to- 
gether, the virtual screen and  the VGA's smooth  panning capabilities can generate 
very  impressive  effects. 
All four  linear planes are  addressed in the same 64K memory space starting at 
A000:OOOO. Consequently, there  are  four bytes at any  given address in VGA memory. 
The VGA provides special hardware to assist the CPU in manipulating all four planes, 
in parallel, with a single memory access, so that  the  programmer  doesn't have to 
spend a great deal of time switching between planes. Astute use of this VGA hard- 
ware  allows  VGA software to as much as quadruple  performance by processing the 
data  for all the planes in parallel. 
Each  memory  plane provides one bit of data  for  each pixel. The bits for  a given pixel 
from  each of the  four planes are  combined  into a  nibble  that serves  as an address 
into  the VGA's palette R A M ,  which maps the  one of 16 colors selected by display 
memory into any one of 64 colors, as  shown in Figure 23.1. All sixty-four mappings 
for all 16 colors are  independently  programmable. (We'll  discuss the VGA's color 
capabilities in detail starting in Chapter 33.) 
The VGA BIOS supports several graphics modes (modes 4, 5,  and 6) in which VGA 
memory  appears  not to be organized as four linear planes. These  modes exist for 
CGA compatibility only, and  are  not  true VGA graphics modes; use them  when you 
need CGA-type operation  and ignore them  the rest of the time. The VGA's special 
features are most powerful in true VGA modes, and it is on  the 16-color  true-VGA 
modes (modes ODH (320~200), OEH (640~200),  10H (640~350),  and 12H (640x480) ) 
that I will concentrate in this part of the book. There is also a 256-color mode,  mode 
13H, that  appears to be a single linear  plane,  but, as we  will see in Chapters 31-34 
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and 47-49 of this book, that's a polite fiction-and discarding  that fiction gives  us an 
opportunity to unleash  the power of the VGAs hardware  for vastly better  perfor- 
mance. VGA text modes, which feature soft fonts,  are another  matter entirely, upon 
which  we'll touch  from time to time. 
With that  background  out of the way,  we can  get on to the sample VGA program 
shown in Listing 23.1. I suggest you run  the  program  before  continuing, since the 
explanations will mean  far  more to you if you've seen the features  in  action. 

LISTING  23.1  123- 1 .ASM 
: Sample V G A  p rog ram.  
: A n i m a t e s   f o u r   b a l l s   b o u n c i n g   a r o u n d  a p l a y f i e l d   b y   u s i n g  
: p a g e   f l i p p i n g .   P l a y f i e l d   i s   p a n n e d   s m o o t h l y   b o t h   h o r i z o n t a l l y  
: and v e r t i c a l l y .  
: By M i c h a e l   A b r a s h .  

s tack   segment   para   s tack   'STACK'  
db   512  dup(?)  

s t a c k   e n d s  

MEORES"/IOEO~MOOE equ 0 : d e f i n e   f o r   6 4 0 x 3 5 0   v i d e o  mode 
: comment o u t   f o r  640x200 mode 

VIOEO_.SEGMENT equ OaOOOh : d i s p l a y  memory  segment f o r  
: t r u e  VGA g r a p h i c s  modes 

LOGICAL-SCREENKWIOTH equ 6 7 2 / 8   : w i d t h   i n   b y t e s   a n d   h e i g h t   i n   s c a n  
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LOGICALLSCREEN-HEIGHT 

PAGE0 
P A G E l  
PAGEOKOFFSET equ 

equ 

PAGElLOFFSET equ 

w 

BALLLWIOTH equ 
BALLLHEIGHT equ 
BLANK-OFFSET equ 

BALL-OFFSET equ 

NUM-BALLS equ 

equ  384 : l i n e s   o f   t h e   v i r t u a l   s c r e e n  

0 ; f l a g   f o r   p a g e  0 when  page f l i p p i n g  
1 ; f l a g   f o r   p a g e  1 when  page f l i p p i n g  
0 ; s t a r t   o f f s e t   o f   p a g e  0 i n  VGA memory 

; w e ' l l   w o r k   w i t h  

LOGICALLSCREEN-WIDTH * LOGICALLSCREENKHEIGHT 
; s t a r t   o f f s e t   o f   p a g e  1 ( b o t h   p a g e s  
; a r e   6 7 2 x 3 8 4   v i r t u a l   s c r e e n s )  

2 4 1 8   ; w i d t h   o f   b a l l   i n   d i s p l a y  memory b y t e s  
2 4   ; h e i g h t   o f   b a l l   i n   s c a n   l i n e s  
PAGE1-OFFSET * 2 ; s t a r t   o f   b l a n k   i m a g e  

BLANK-OFFSET + (BALLLWIDTH * BALLLHEIGHT) 

4 
: s t a r t   o f f s e t   o f   b a l l   i m a g e   i n  VGA memory 
;number o f   b a l l s   t o   a n i m a t e  

; i n  VGA memory 

; VGA r e g i s t e r   e q u a t e s .  

SC-INDEX 
MAP-MASK 

equ  3c4h ; S C  i n d e x   r e g i s t e r  
equ 2 ; S C  map mask r e g i s t e r  

GC- INDEX equ  3ceh ;GC i n d e x   r e g i s t e r  
GC-MODE 
CRTC-INDEX 

equ 5 :GC mode r e g i s t e r  
equ  03d4h ;CRTC i n d e x   r e g i s t e r  

STARTLADDRESS-HIGH equ Och :CRTC s t a r t   a d d r e s s   h i g h   b y t e  
START-ADDRESS-LOW equ Odh ;CRTC s t a r t   a d d r e s s   l o w   b y t e  
CRTC-OFFSET equ  13h :CRTC o f f s e t   r e g i s t e r  
INPUT-STATUS-1 equ  03dah ;VGA s t a t u s   r e g i s t e r  
VSYNC-MASK 
DE-MASK 

e q u   0 8 h   : v e r t i c a l   s y n c   b i t   i n   s t a t u s   r e g i s t e r  1 

AC- INDEX 
e q u   O l h   ; d i s p l a y   e n a b l e   b i t   i n   s t a t u s   r e g i s t e r  1 

HPELPAN 
equ  03cOh :AC i n d e x   r e g i s t e r  
equ  20h OR 13h : A C  h o r i z o n t a l   p e l   p a n n i n g   r e g i s t e r  

: ( b i t  7 i s   h i g h   t o   k e e p   p a l e t t e  RAM 
; a d d r e s s i n g   o n )  

dseg  segment   para common 'DATA' 
Cur ren tpage  db  P A G E l  ;page t o  draw t o  
C u r r e n t P a g e O f f s e t  dw PAGEl-OFFSET 

: F o u r   p l a n e ' s   w o r t h   o f   m u l t i c o l o r e d   b a l l   i m a g e .  

B a l l  P1 aneOImage  1   abel   byte 
db   000h.   03ch.   000h.   001h.   Of fh .   080h 
db   007h .   O f fh .  DeOh. OOfh .   Of fh .  OfOh 
db  4 * 3   dup(000h)  
d b   0 7 f h .   O f f h .   O f e h .   O f f h .   O f f h .   O f f h  
d b   O f f h .   O f f h .   O f f h .   O f f h .   O f f h .   O f f h  
db  4 * 3   dup(000h)  
d b   0 7 f h .   O f f h .   O f e h .   0 3 f h .   O f f h .   O f c h  
db   03 fh .   O f fh .   O fch .   O l fh .   O f fh .   O fBh  
db  4 * 3  dup(000h)  

db  4  * 3  dup(000h)  
d b   O l f h .   O f f h ,   O f 8 h .   0 3 f h .   O f f h .   O f c h  
d b   0 3 f h .   O f f h .   O f c h .   0 7 f h .   O f f h .   O f e h  
d b   0 7 f h .   O f f h .   O f e h .   O f f h .   O f f h .   O f f h  
d b   O f f h .   O f f h .   O f f h .   O f f h .   O f f h .   O f f h  
db 8 * 3   dup(000h)  
db  OOfh.   Of fh .   OfOh.   007h.   Of fh .  OeOh 
db  001h.   Of fh .   080h.   000h.   03ch.  OOOh 

db   12  * 3   dup(000h)  

: b l u e   p l a n e   i m a g e  

B a l l  P1 a n e l I m a g e   1   a b e l   b y t e  :g reen   p lane   image  

B a l l  P1 ane2 Image   1   abe l   by te   ; red   p lane   image  
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db 
db 

O f f h ,   O f f h .   O f f h .   O f f h .   O f f h .   O f f h  
O f f h .   O f f h .   O f f h .   0 7 f h .   O f f h ,   O f e h  

d b   0 7 f h .   O f f h .   O f e h .   0 3 f h .   O f f h .   O f c h  
db 
db 

03 fh .  O f f h .  O fch .  O l f h .  O f f h .  Of8h  
OOfh, O f f h .  OfOh. 007h. O f f h .  OeOh 

db  001h. O f f h .  080h. 000h. 03ch.  OOOh 
B a l l   P l a n e 3 I m a g e  1 a b e l   b y t e   : i n t e n s i t y  on f o r   a l l   p l a n e s ,  

: t o   p r o d u c e   h i g h - i n t e n s i t y   c o l o r s  
db 
db 
db 
db 
d b  
db 
db 
db 
db 
db 
db 
db 

B a l l  X 
B a l l Y  
Las tBa l  1 X 
L a s t B a l l Y  
B a l l X I n c  
B a l l Y I n c  
B a l l  Rep 

B a l l   C o n t r o l  

000h. 03ch. 000h. 001h. O f f h .   0 8 0 h  
007h. O f f h .  OeOh. OOfh. O f f h .  OfOh 
O l f h .  O f f h .  O f8h .  0 3 f h .  O f f h .   O f c h  
03 fh .  O f f h .  Ofch .  0 7 f h .  O f f h .   O f e h  
07 fh .  O f f h .  Ofeh ,  O f f h .  O f f h .   O f f h  
O f f h .  O f f h .  O f f h .  O f f h .  O f f h .   O f f h  
O f f h .  O f f h ,  O f f h .  O f f h .  O f f h .   O f f h  
O f fh .  O f f h .  O f f h .  0 7 f h .  O f f h .   O f e h  
0 7 f h .  O f f h .  Ofeh .  0 3 f h .  O f f h .   O f c h  
03 fh .  O f f h .  O fch ,  O l f h .  O f f h .   O f 8 h  
OOfh. O f f h .  OfOh. 007h. O f f h .  OeOh 
001h. O f f h .  080h, 000h. 03ch.  OOOh 

dw 15.  50 ,  4 0 .   7 0   ; a r r a y   o f   b a l l  x coords  
dw 40,  200.  110. 300 : a r r a y   o f   b a l l  y coo rds  
dw 15.  50. 40.  70 
dw 40. 100.  160. 30 

; p r e v i o u s   b a l l  x coords  
: p r e v i o u s   b a l l  y coo rds  

dw 1. 1. 1. 1 
dw 

: x  move f a c t o r s   f o r   b a l l  
8. 8, 8. 8 ;y move f a c t o r s   f o r   b a l l  

dw 1. 1. 1. 1 :B t i m e s   t o   k e e p   m o v i n g  
: b a l l   a c c o r d i n g   t o   c u r r e n t  
: i n c r e m e n t s  

dw B a l l O C o n t r o l ,   B a l l l C o n t r o l   : p o i n t e r s   t o   c u r r e n t  
dw B a l l 2 C o n t r o l .   B a l l 3 C o n t r o l  ; l o c a t i o n s   i n   b a l l  

; c o n t r o l   s t r i n g s  
B a l l C o n t r o l S t r i n g  dw B a l l O C o n t r o l ,   B a l l l C o n t r o l   : p o i n t e r s   t o  

dw B a l l 2 C o n t r o 1 ,   B a l l 3 C o n t r o l  : s t a r t   o f   b a l l  
: c o n t r o l   s t r i n g s  

: B a l l   c o n t r o l   s t r i n g s .  

B a l l O C o n t r o l   l a b e l   w o r d  

B a l   l l C o n t r o l  1 abe l   word  

B a l 1 2 C o n t r o l  1 abe l   word  

B a l l 3 C o n t r o l   l a b e l   w o r d  

dw 10.  1. 4 ,   1 0 .  -1. 4 ,   1 0 .  -1. - 4 .   1 0 ,  1. - 4 .  0 

dw 12.  -1. 1. 28. -1. -1. 1 2 .  1. -1. 28. 1. 1. 0 

dw 20, 0. -1. 40. 0 .  1. 2 0 ,  0 .  -1. 0 

dw 8. 1. 0. 5 2 .  -1. 0.  44. 1. 0.  0 

: P a n n i n g   c o n t r o l   s t r i n g .  

i f d e f  MEDRESpVIOEO_MODE 
P a n n i n g C o n t r o l S t r i n g  dw 32.  1. 0 .  34.  0 .  1. 32.  -1, 0.  34 .  0 .  -1. 0 
e l s e  
P a n n i n g C o n t r o l S t r i n g  dw 32.  1. 0. 184,  0, 1. 32. -1. 0. 184.  0. -1. 0 
e n d i f  
Pann ingCon t ro l  dw P a n n i n g C o n t r o l S t r i n g   : p o i n t e r   t o   c u r r e n t   l o c a t i o n  

PanningRep dw 1 ;# t i m e s   t o   p a n   a c c o r d i n g   t o   c u r r e n t  

Pann ingXInc  dw 1 ; x  p a n n i n g   f a c t o r  
Pann ingYInc  dw 0 ;y p a n n i n g   f a c t o r  

; i n   p a n n i n g   c o n t r o l   s t r i n g  

: p a n n i n g   i n c r e m e n t s  
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HPan db 0 ; h o r i z o n t a l   p e l   p a n n i n g   s e t t i n g  
P a n n i n g S t a r t O f f s e t  dw 0 ; s t a r t   o f f s e t   a d j u s t m e n t  t o  p r o d u c e   v e r t i c a l  

dseg  ends 
; p a n n i n g  & c o a r s e   h o r i z o n t a l   p a n n i n g  

: Macro t o   s e t   i n d e x e d   r e g i s t e r  P2 o f   c h i p   w i t h   i n d e x   r e g i s t e r  
; a t  P 1  t o  AL. 

SETREG macro P 1 .  P2 
mov dx ,P1 
mov ah .a l  
mov a1 .P2 
o u t   d x . a x  
endm 

c s e g   s e g m e n t   p a r a   p u b l i c  'CODE' 

s t a r t   p r o c   n e a r  
assume  cs:cseg,   ds:dseg 

mov ax .dseg 
mov ds .ax  

: S e l e c t   g r a p h i c s  mode. 

i f d e f  MEDRES-VIDEO-MODE 
mov ax.010h 

e l s e  
mov ax.0eh 

e n d i  f 
i n t  10h 

: ES a l w a y s   p o i n t s   t o  VGA memory. 

mov ax.VIDE0-SEGMENT 
mov es ,ax 

: Draw b o r d e r   a r o u n d   p l a y f i e l d   i n   b o t h   p a g e s .  

mov d i  , PAGEO-OFFSET 
c a l l   D r a w B o r d e r   ; p a g e  0 b o r d e r  
mov d i  .PAGEl-OFFSET 
c a l l   D r a w B o r d e r   ; p a g e  1 b o r d e r  

: Draw a l l   f o u r   p l a n e ' s   w o r t h   o f   t h e   b a l l  t o  u n d i s p l a y e d  VGA memory. 

mov a1 ,O lh  
SETREG S C - I N D E X .  MAP-MASK 
mov s i   . o f f s e t   B a l l   P l a n e O I m a g e  
mov d i  .BALL-OFFSET 
mov cx.BALL-WIDTH * BALLLHEIGHT 
r e p  movsb 
mov a1 .02h   : enab le   p lane  1 
SETREG S C - I N D E X .  MAP-MASK 
mov s i   , o f f s e t   B a l l P l a n e l I m a g e  
mov di.BALL-OFFSET 
mov cx.BALL-WIDTH * BALLLHEIGHT 
r e p  movsb 
mov a1 .04h 
SETREG S C - I N D E X .  MAP-MASK 
mov s i   . o f f s e t   B a l l P l a n e 2 I m a g e  
mov d i  .BALLLOFFSET 

; e n a b l e   p l a n e  0 

: e n a b l e   p l a n e  2 
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mov cx.BALLLWIDTH * BALLLHEIGHT 
rep  movsb 
mov a l . 0 8 h   : e n a b l e   p l a n e  3 
SETREG SC-INDEX.  MAP-MASK 
mov s i . o f f s e t   B a l l P l a n e 3 I m a g e  
mov d i  .BALL-OFFSET 
mov cx,BALL-WIDTH * BALL-HEIGHT 
rep  movsb 

: Draw a b l a n k  

mov 
SETREG 
mov 
mov 
sub 

i m a g e   t h e   s i z e   o f   t h e   b a l l   t o   u n d i s p l a y e d  VGA memory. 

a1 . O f h   ; e n a b l e   a l l  memory p l a n e s ,   s i n c e   t h e  
S C - I N D E X ,  MAP-MASK ; b l a n k   h a s   t o   e r a s e   a l l   p l a n e s  
d i  .BLANK-OFFSET 
cx.BALLLWIDTH * BALLLHEIGHT 
a1 .a1 

r e p   s t o s b  

; Se t  VGA t o   w r i t e  mode 1. f o r   b l o c k   c o p y i n g   b a l l   a n d   b l a n k   i m a g e s  

mov dx.GCLINDEX 
mov a1 .GCLMODE 
o u t   d x . a l   ; p o i n t  GC I n d e x   t o  GC Mode r e g i s t e r  
i n c   d x   ; p o i n t   t o  GC D a t a   r e g i s t e r  
jmp $+2 ; d e l a y   t o   l e t   b u s   s e t t l e  
i n  a1 , d x   : g e t   c u r r e n t   s t a t e   o f  GC Mode 
and a1 . n o t  3 : c l e a r   t h e   w r i t e  mode b i t s  
o r  a1 .1 : s e t   t h e   w r i t e  mode f i e l d   t o  1 
jmp $+2 : d e l a y   t o   l e t   b u s   s e t t l e  
o u t   d x . a l  

: Se t  VGA o f f s e t   r e g i s t e r   i n   w o r d s   t o   d e f i n e   l o g i c a l   s c r e e n   w i d t h .  

mov a1 .LOGICALLSCREENLWIDTH / 2 
SETREG CRTC-INDEX. CRTC-OFFSET 

: Move t h e   b a l l s   b y   e r a s i n g   e a c h   b a l l ,   m o v i n g  i t , and 
: r e d r a w i n g  it, t h e n   s w i t c h i n g   p a g e s  when t h e y ' r e   a l l  moved. 

B a l l A n i m a t i o n L o o p :  

EachBal l   Loop:  

; E r a s e   o l d   i m a g e  o f  b a l l   i n   t h i s  page ( a t   l o c a t i o n   f r o m   o n e   m o r e   e a r l i e r ) .  

mov b x . (  NUM-BALLS * 2 ) - 2 

mov si.BLANKLOFFSET : p o i n t   t o   b l a n k   i m a g e  
mov c x , [ L a s t B a l l X + b x l  
mov d x . [ L a s t B a l l Y + b x l  
c a l l  DrawBal 1 

: Se t  new l a s t   b a l l   l o c a t i o n .  

mov a x . [ B a l l X + b x l  
mov [ L a s t b a l l X + b x l . a x  
mov a x . [ B a l l Y + b x l  
mov [ L a s t b a l l Y + b x l . a x  

; Change t h e   b a l l  movement  values i f  i t ' s   t i m e   t o  do so .  

d e c   [ B a l   l R e p + b x ]   ; h a s   c u r r e n t   r e p e a t   f a c t o r   r u n   o u t ?  
j n z   M o v e B a l l  
mov s i , [ B a l l C o n t r o l + b x l   ; i t ' s   t i m e   t o   c h a n g e  movement  values 
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1 odsw  ;ge t  new r e p e a t   f a c t o r   f r o m  

a n d   a x . a x   ; a t   e n d   o f   c o n t r o l   s t r i n g ?  
j n z  SetNewMove 
mov si,[BallControlString+bxl ; r e s e t   c o n t r o l   s t r i n g  
1 odsw  ;ge t  new r e p e a t   f a c t o r  

mov [ B a l l R e p + b x l . a x   ; s e t  new  movement r e p e a t   f a c t o r  
1 odsw ; s e t  new x movement   increment  
mov [ B a l l   X I n c + b x l   , a x  
1 odsw ; s e t  new y movement   increment  
mov [ B a l l Y I n c + b x l . a x  
mov [ B a l l C o n t r o l + b x l , s i   : s a v e  new c o n t r o l   s t r i n g   p o i n t e r  

; c o n t r o l   s t r i n g  

SetNewMove: 

; Move t h e   b a l l .  

MoveBal l  

; Draw b 

mov a x ,   [ B a l l   X I n c + b x l  
add  [Ba l l   X+bx l   ,ax  ;move i n  x d i r e c t i o n  
mov a x ,   [ B a l l  Y I n c + b x l  
a d d   [ B a l l Y + b x l . a x  :move i n  y d i r e c t i o n  

a l l   a t  new l o c a t i o n .  

mov si.BALL-OFFSET ; p o i n t   t o   b a l l ' s   i m a g e  
mov c x .   [ B a l l   X + b x l  
mov dx .CBa l lY+bx l  
c a l l   D r a w B a l l  

dec   bx  
dec   bx  
j n s   E a c h B a l l   L o o p  

; S e t   u p   t h e   n e x t   p a n n i n g   s t a t e   ( b u t   d o n ' t   p r o g r a m  i t  i n t o   t h e  
; VGA y e t ) .  

c a l l   A d j u s t p a n n i n g  

; W a i t   f o r   d i s p l a y   e n a b l e   ( p i x e l   d a t a   b e i n g   d i s p l a y e d )  s o  we know 
; w e ' r e   n o w h e r e   n e a r   v e r t i c a l   s y n c .   w h e r e   t h e   s t a r t   a d d r e s s   g e t s  
; la tched   and   used .  

c a l l  Wai t D i s p l   a y E n a b l e  

; F l i p   t o   t h e  new p a g e   b y   c h a n g i n g   t h e   s t a r t   a d d r e s s .  

mov 
add 
push 
SETREG 
mov 
POP 
mov 
SETREG 

a x . [ C u r r e n t P a g e O f f s e t l  
a x . C P a n n i n g S t a r t O f f s e t 1  
ax  
CRTC-INDEX. START-ADDRESS-LOW 
a 1 , b y t e   p t r   [ C u r r e n t P a g e O f f s e t + l l  
ax  
a1 ,ah 
CRTC-INDEX. START-ADDRESS-HIGH 

; W a i t   f o r   v e r t i c a l   s y n c  s o  t h e  new s t a r t   a d d r e s s   h a s  a chance 
; t o   t a k e   e f f e c t .  
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c a l l  Wai tVSync 

; S e t   h o r i z o n t a l   p a n n i n g  now, j u s t  as new s t a r t   a d d r e s s   t a k e s   e f f e c t .  

mov a1 , [HPanl 
mov dx.INPUT-STATUS-1 
i n  a1 , d x   ; r e s e t  AC a d d r e s s i n g   t o   i n d e x   r e g  
mov dx.AC-INDEX 
mov a1 .HPELPAN 
o u t   d x . a l   ; s e t  AC i n d e x   t o   p e l   p a n   r e g  

o u t   d x . a l   ; s e t  new p e l   p a n n i n g  
mov a 1  . [ H P a n l  

; F l i p   t h e   p a g e   t o   d r a w   t o   t o   t h e   u n d i s p l a y e d   p a g e .  

x o r   C C u r r e n t P a g e l . 1  
j n z   I s P a g e l  
mov [CurrentPageOffset].PAGEO-OFFSET 
j m p   s h o r t   E n d F l i p P a g e  

mov [CurrentPageOffsetl.PAGEl-OFFSET 
I s P a g e l :  

EndFl  ipPage: 

; E x i t  i f  a k e y ' s   b e e n   h i t .  

mov ah.1 
i n t  16h 
j n z  Done 
j m p   B a l l A n i m a t i o n L o o p  

; F i n i s h e d ,   c l e a r   k e y ,   r e s e t   s c r e e n  mode and e x i t .  

Done: 
mov ah .0   ;c lear   key  
i n t  16h 

mov a x . 3   ; r e s e t   t o   t e x t  mode 
i n t  10h 

mov a h . 4 c h   ; e x i t   t o  DDS 
i n t  21h 

s t a r t  endp 

; R o u t i n e   t o   d r a w  a b a l l - s i z e d   i m a g e   t o  all p l a n e s .   c o p y i n g   f r o m  
: o f f s e t  S I  i n  VGA memory t o   o f f s e t  C X . D X  ( x . y )   i n  VGA memory i n  
; t h e   c u r r e n t   p a g e .  

DrawBal l  
mov 
mu1 
add 
add 
mov 
mov 
push 
push 
POP 

D r a w B a l l  Loop: 

p r o c   n e a r  
ax.LOGICAL-SCREEN-WIDTH 
d x   ; o f f s e t   o f   s t a r t   o f   t o p   i m a g e   s c a n   l i n e  
a x . c x   ; o f f s e t   o f   u p p e r   l e f t   o f   i m a g e  
a x . [ C u r r e n t P a g e O f f s e t ]   : o f f s e t   o f   s t a r t   o f   p a g e  
d i   , a x  
bp,BALL-HEIGHT 
dS 
es 
dS ;move f r o m  VGA memory t o  VGA memory 
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p u s h   d i  
mov cx.BALL-WIDTH 
r e p  movsb  ;draw a s c a n   l i n e   o f   i m a g e  
POP 
add 
dec 
j nz 
POP 
r e t  

DrawBal l  

; W a i t   f o r   t h e  

Wai tVSync 
mov 

d i  
di.LOGICAL-SCREEN-WIDTH ; p o i n t   t o   n e x t   d e s t i n a t i o n   s c a n   l i n e  

DrawBal l   Loop 
ds 

bp 

endp 

l e a d i n g   e d g e   o f   v e r t i c a l   s y n c   p u l s e .  

p r o c   n e a r  
dx.INPUT-STATUS-1 

Wai tNotVSyncLoop:  
i n  
and a1 .VSYNC-MASK 

a1 .dx 

j n z  Wai tNotVSyncLoop 

i n  
and a1 .VSYNC-MASK 

a1 ,dx 

Jz  WaitVSyncLoop 
r e t  

WaitVSync  endp 

WaitVSyncLoop: 

; W a i t   f o r   d i s p l a y   e n a b l e   t o   h a p p e n   ( p i x e l s   t o   b e   s c a n n e d   t o  
; t h e   s c r e e n ,   i n d i c a t i n g   w e ' r e   i n   t h e   m i d d l e   o f   d i s p l a y i n g  a f r a m e ) .  

W a i t D i s p l a y E n a b l e   p r o c   n e a r  

WaitDELoop: 
mov dx.INPUT-STATUS-1 

i n  a1 , d x  
and  a1 .DE-MASK 
j nz   Wa i tDELoop  
r e t  

Wa i tD isp layEnab le   endp  

; P e r f o r m   h o r i z o n t a l / v e r t i c a l  

A d j u s t p a n n i n g  p r o c   n e a r  
dec [Pann ingRep l  
i n z  DoPan 

p a n n i n g .  

; t i m e   t o   g e t  new p a n n i n g   v a l u e s ?  

mov s i . C P a n n i n g C o n t r o l 1   ; p o i n t   t o   c u r r e n t   l o c a t i o n   i n  

1  odsw ; g e t   p a n n i n g   r e p e a t   f a c t o r  
a n d   a x . a x   ; a t   e n d   o f   p a n n i n g   c o n t r o l   s t r i n g ?  
jnz  SetnewPanVal   ues 
mov s i . o f f s e t   P a n n i n g C o n t r o l S t r i n g   ; r e s e t   t o   s t a r t   o f   s t r i n g  
1 odsw ; g e t   p a n n i n g   r e p e a t   f a c t o r  

mov C P a n n i n g R e p 1 . a ~   ; s e t  new p a n n i n g   r e p e a t   v a l u e  
1 odsw 
mov C P a n n i n g X I n c 1 . a ~   ; h o r i z o n t a l   p a n n i n g   v a l u e  
1 odsw 
mov C P a n n i n g Y I n c 1 . a ~   ; v e r t i c a l   p a n n i n g   v a l u e  
mov [ P a n n i n g C o n t r o l ] , s i   ; s a v e   c u r r e n t   l o c a t i o n   i n   p a n n i n g  

: p a n n i n g   c o n t r o l   s t r i n g  

SetNewPanValues: 
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: c o n t r o l   s t r i n g  

; Pan a c c o r d i n g  

OoPan: 
mov 
and 
j s  
j z  
mov 
i n c  
CmP 
j b  
sub 
i nc 
j mp 

mov 
dec 
j n s  
mov 
dec 

mov 

PanLe f t :  

SetHPan: 

t o   p a n n i n g   v a l u e s .  

a x , [ P a n n i n g X I n c l  
ax ,   ax  
P a n L e f t  
C h e c k V e r t i c a l P a n  
a1 , [HPanl 
a1 
a l . 8  
SetHPan 
a1 .a1 
[ P a n n i n g S t a r t O f f s e t l  
s h o r t  SetHPan 

a1 .[HPan] 
a1 
SetHPan 
a l . 7  
[ P a n n i n g S t a r t O f f s e t l  

[HPanl  .a1 
C h e c k v e r t i c a l   P a n :  

mov ax , [Pann ingYInc l  
and  ax.ax 
j s  PanUp 
j z  EndPan 

: h o r i z o n t a l   p a n n i n g  

: n e g a t i v e  means  pan l e f t  

:pan r i g h t :  i f  p e l   p a n   r e a c h e s  
: 8. i t ' s   t i m e   t o  move t o   t h e  
; n e x t   b y t e   w i t h  a p e l   p a n   o f  0 
: and a s t a r t   o f f s e t   t h a t ' s   o n e  
: h i g h e r  

:pan l e f t :  i f  p e l   p a n   r e a c h e s  -1, 
: i t ' s   t i m e   t o  move t o   t h e   n e x t  
: b y t e   w i t h  a p e l   p a n   o f  7 and a 
: s t a r t   o f f s e t   t h a t ' s   o n e   l o w e r  

;save new p e l   p a n   v a l u e  

: v e r t i c a l   p a n n i n g  

: n e g a t i v e  means  pan  up 

add [PanningStartOffset l ,LOGICAL_SCREEN_WIDTH 
; p a n   d o w n   b y   a d v a n c i n g   t h e   s t a r t  
; address   by  a s c a n   l i n e  

j m p   s h o r t  EndPan 

sub  [PanningStartOffset l .LOGICAL_SCREEN_WIDTH 
PanUp: 

; p a n   u p   b y   r e t a r d i n g   t h e   s t a r t  
: address   by  a s c a n   l i n e  

EndPan: 
r e t  

: Draw t e x t u r e d   b o r d e r   a r o u n d   p l a y f i e l d   t h a t   s t a r t s   a t  D I .  

D rawBorde r   p roc   nea r  

: Draw t h e   l e f t   b o r d e r .  

p u s h   d i  
rnov cx.LOGICAL-SCREEN-HEIGHT / 16 

mov a1  .Och : s e l e c t   r e d   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
a d d   d i  .LOGICAL-SCREEN-WIDTH * 8 
mov a1  .Oeh ; s e l e c t   y e l l o w   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
add di.LOGICAL-SCREEN-WIDTH * 8 
l o o p   D r a w L e f t B o r d e r L o o p  
pop d i  

D rawLe f tBo rde rLoop :  

: Draw t h e   r i g h t   b o r d e r .  

p u s h   d i  
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add di.LOGICAL-SCREEN-WIDTH - 1 
mov cx.LOGICAL-SCREEN-HEIGHT / 16 

mov a1 .Oeh ; s e l e c t   y e l l o w   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
add di.LOGICAL-SCREEN-WIDTH * 8 
mov  a1  .Och : s e l e c t   r e d   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l   o c k  
add di.LOGICAL-SCREEN-WIDTH * 8 
l o o p   D r a w R i g h t B o r d e r L o o p  
p o p   d i  

D rawRigh tBorde rLoop :  

; Draw t h e   t o p   b o r d e r .  

p u s h   d i  
mov cx.(LOGICAL-SCREEN-WIDTH - 2) / 2 

DrawTopBorderLoop:  
i n c   d i  
mov a1 .Oeh ; s e l e c t   y e l l o w   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
i n c   d i  
mov a1 .Och ; s e l e c t   r e d   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l   o c k  
loop  DrawTopBorderLoop 
p o p   d i  

; Draw t h e   b o t t o m   b o r d e r .  

add di.(LOGICAL-SCREEN-HEIGHT - 8 )  * LOGICAL-SCREEN-WIDTH 
mov cx.(LOGICAL-SCREEN-WIDTH - 2 )  / 2 

i n c   d i  
mov a1 .Och ; s e l e c t   r e d   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l o c k  
i n c   d l  
mov a1 .Oeh ; s e l e c t   y e l l o w   c o l o r   f o r   b l o c k  
c a l l   D r a w B o r d e r B l   o c k  
l oop   D rawBot tomBorderLoop  
r e t  

DrawBorder  endp 

; Draws  an   8x8   border   b lock  i n   c o l o r   i n  AL a t   l o c a t i o n  01. 
; D I  p r e s e r v e d .  

D r a w B o r d e r B l o c k   p r o c   n e a r  

DrawBot tomBorderLoop:  

p u s h   d i  
SETREG SC-INDEX. MAP-MASK 
mov a1 . O f f h  
r e p t   8  
s t o s b  
add di.LOGICAL-SCREEN-WIDTH - 1 
endm 
POP d i  
r e t  

DrawBorderBl   ock  endp 
A d j u s t p a n n i n g   e n d p  
cseg  ends 

e n d   s t a r t  
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Smooth Panning 
The first thing you’ll notice upon  running  the sample program is the remarkable 
smoothness with  which the display pans from side-to-side and up-and-down. That 
the display can pan  at all is made possible by two VGA features: 256K  of display 
memory and  the virtual screen capability.  Even the most memory-hungry of the VGA 
modes, mode  12H (64Ox480),  uses  only  37.5K per plane,  for  a total of 150K out of 
the total 256K  of  VGA memory. The medium-resolution mode,  mode 10H (640~350), 
requires only 28K per plane,  for  a total of 112K. Consequently, there is room in VGA 
memory to store  more than two full screens of video data in mode 1OH (which the 
sample program  uses),  and  there is room  in all modes to store  a larger virtual screen 
than is actually displayed. In the sample program,  memory is organized as two virtual 
screens, each with a resolution of  672x384,  as  shown in Figure 23.2. The  area of the 
virtual screen actually  displayed at any  given time is selected by setting the display 
memory address at which  to begin fetching video data; this is set by  way  of the start 
address registers (Start Address High, CRTC register OCH, and Start Address Low, 
CRTC register ODH) . Together these registers make up a 16-bit  display memory ad- 
dress at which the CRTC begins fetching  data at  the  beginning of each video frame. 
Increasing the start address causes higher-memory areas of the virtual screen to be 

A000 : 0000 

A000 : 7 EO0 

A000 : FCOO 

video memory organization for Listing 23. I .  
Figure 23.2 
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displayed. For example, the Start Address High register could be set to SOH and  the 
Start Address Low register could be set to OOH in order  to cause the display screen to 
reflect memory starting at offset 8000H in each plane, rather  than  at  the default 
offset  of 0. 
The logical height of the virtual screen is defined by the  amount of  VGA memory 
available. As the VGA scans display memory  for video data,  it progresses from  the 
start address toward higher memory one scan line at a time, until the  frame is com- 
pleted. Consequently, if the start address is increased, lines farther toward the  bottom 
of the virtual screen are displayed; in effect, the virtual screen appears to scroll up  on 
the physical screen. 
The logical width of the virtual screen is defined by the Offset register (CRTC  regis- 
ter 13H), which allows redefinition of the  number of words of  display memory 
considered to  make up  one scan  line.  Normally, 40  words  of  display memory constitute a 
scan line; after the CRTC scans  these 40  words for 640  pixels  worth  of data, it advances  40 
words from  the start of that scan line to find the start of the  next scan line in memory. 
This  means  that displayed  scan lines are contiguous in memory.  However, the Offset 
register can be set so that scan lines are logically wider (or narrower, for  that matter) 
than their displayed  width. The sample program sets the Offset  register  to 2 A H ,  making 
the logical  width  of the virtual  screen 42  words, or 42 * 2 * 8 = 672  pixels, as contrasted 
with the actual width  of the  mode  10h screen, 40 words or 640  pixels. The logical 
height of the virtual  screen  in the sample program is  384;  this  is  accomplished  simply by 
reserving 84 * 384 contiguous bytes  of VGA memory  for the virtual screen,  where  84 
is the virtual screen width in bytes and 384 is the virtual screen  height  in scan lines. 
The start address is the key to panning  around  the virtual screen. The start address 
registers select the row  of the virtual screen that  maps to the top of the display; 
panning down a scan line  requires only that the start address be increased by the 
logical  scan line width in bytes,  which is equal to the Offset  register  times two. The start 
address  registers select the  column  that  maps to the left edge of the display  as  well, 
allowing horizontal  panning, although in this case  only  relatively coarse byte-sized 
adjustments-panning by eight pixels at a time-are supported. 
Smooth  horizontal panning is provided by the Horizontal Pel Panning register, AC 
register 13H, working in conjunction with the start address. Up to 7 pixels worth of 
single pixel panning of the displayed image to the left is performed by increasing 
the Horizontal Pel Panning register from 0 to 7. This exhausts the  range of motion 
possible via the Horizontal Pel Panning register; the  next pixel’s worth of smooth 
panning is accomplished by incrementing  the start address by one  and resetting the 
Horizontal  Pel Panning register  to 0. Smooth horizontal panning should be viewed as a 
series of fine adjustments in the 8-pixel range between coarse byte-sized adjustments. 
A horizontal panning oddity: Alone among VGA modes, text mode  (in most cases) 
has 9 dots per character clock. Smooth  panning in this mode  requires cycling the 
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Horizontal Pel Panning register through  the values 8,0,  1,2,3,4,5,6,   and 7 .  8 is the 
“no  panning” setting. 
There is one annoying  quirk about  programming  the AC. When the AC Index regis- 
ter is set, only the lower five bits are used as the  internal  index.  The  next  most 
significant bit, bit 5, controls the source of the video data  sent to the  monitor by the 
VGA. When bit 5 is set to  1, the  output of the palette RAM, derived  from display 
memory, controls  the displayed pixels; this is normal  operation. When bit 5 is 0, 
video data  does  not come from  the  palette R A M ,  and  the screen  becomes  a solid 
color. The only time bit 5 of the AC Index register should be 0 is during  the setting 
of a  palette RAM register, since the CPU  is only able  to write to  palette RAM when bit 
5 is 0. (Some VGAs do  not  enforce this, but you should always set bit 5  to 0 before 
writing to the palette RAM just to be safe.) Immediately after  setting  palette RAM, 
however,  20h (or any other value with bit  5  set  to 1) should  be written to the AC 
Index register to restore  normal video, and  at all other times bit 5  should  be set to 1. 

By  the way, palette  RAM can be set via the BIOS video interrupt (interrupt I OH), P function I OH. Whenever an VGA function can be performed reasonably  well  through 
a BIOS function,  as  it can in the case of setting palette  RAM, it should be, both 
because there is no point  in reinventing the wheel and because  the  BIOS  may well 
mask incompatibilities between the  IBM VG-4 and VGA clones. 

Color Plane Manipulation 
The VGA provides a  considerable amount of hardware assistance for  manipulating 
the  four display  memory  planes. Two features illustrated by the sample program are  the 
ability to control which planes are written to by a CPU write and  the ability to copy 
four bytes-one from  each plane-with a single CPU read  and a single CPU write. 
The Map  Mask register (SC register 2) selects which planes are written to by  CPU 
writes. If bit 0 of the Map  Mask register is 1, then each byte written by the CPU  will be 
written to VGA memory plane 0, the  plane  that provides the video data  for  the least 
significant bit of the palette RAM address. If bit 0 of the Map  Mask register is 0, then CPU 
writes  will not affect. plane 0. Bits 1, 2, and 3 of the Map  Mask register similarly control 
CPU  access to  planes 1 , 2 ,  and 3, respectively. Any  of the  16 possible combinations of 
enabled  and disabled planes  can  be  selected. Beware,  however,  of writing to an  area 
of memory that is not zeroed. Planes that  are disabled by the Map  Mask register are 
not  altered by  CPU writes, so old  and new images can mix on  the  screen,  producing 
unwanted  color effects as, say, three planes  from the  old image  mix  with one  plane 
from the new image. The sample  program solves this by ensuring  that  the memory 
written to is zeroed. A better way to set all planes  at once is provided by the  set/reset 
capabilities of the VGA, which 1’11 cover in Chapter 25. 
The sample program writes the image  of the  colored ball to VGA memory by en- 
abling one plane at a time and writing the image of the ball for  that  plane. Each 
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image is written to the same VGA addresses; only the destination  plane, selected by 
the Map Mask register, is different. You might think of the ball’s image as consisting 
of four colored overlays,  which together  make up a multicolored image. The sample 
program writes a blank image to VGA memory by enabling all planes and writing a 
block  of zero bytes; the zero bytes are written to all four VGA planes simultaneously. 
The images are written to a nondisplayed portion of VGA memory  in order to take 
advantage of a useful VGA hardware feature, the ability to copy  all four planes at 
once. As shown by the image-loading code discussed  above, four different sets of 
reads and writes-and  several OUTs as  well-are required to copy a multicolored 
image into VGA memory as  would be needed to draw the same image into  a  non- 
planar pixel buffer. This causes unacceptably slow performance, all the  more so 
because the wait states that  occur  on accesses to VGA memory  make  it very desirable 
to minimize display memory accesses, and because OUTs tend to be very  slow. 
The solution is to take advantage of the VGAs  write mode 1, which  is selected via bits 
0 and 1 of the GC Mode register (GC register 5 ) .  (Be careful to preserve bits 2-7 
when setting bits 0 and 1, as is done in Listing 23.1.) In write mode 1, a single CPU 
read loads the addressed byte from all four planes into the VGA’s four  internal latches, 
and a single CPU write  writes the contents of the latches to the  four planes. During 
the write, the byte written by the CPU  is irrelevant. 
The sample program uses  write mode 1 to copy the images that were  previously 
drawn to the high end of VGA memory into a  desired area of display  memory,  all in 
a single block  copy operation. This is an excellent way to keep  the  number of reads, 
writes, and OUTs required to manipulate  the VGA’s display memory low enough to 
allow real-time drawing. 
The Map Mask register can still  mask out planes in write mode 1. All four planes are 
copied  in  the sample program because the Map Mask register is still OFh from  when 
the blank image was created. 
The  animated images appear to move a  bitjerkily because they are byte-aligned and 
so must move a  minimum of 8 pixels  horizontally. This is easily  solved  by storing 
rotated versions  of  all images in VGA memory, and  then in  each instance drawing 
the correct  rotation  for the pixel alignment  at which the image is to be drawn; we’ll 
see this technique  in action in Chapter 49. 
Don’t worry if you’re not catching everything in this chapter  on  the first pass; the 
VGA is a complicated beast, and learning about it is an iterative process. We’ll be 
going over these features  again, in different contexts, over the course of the rest of 
this book. 

Page Flipping 
When  animated graphics are drawn directly on  the screen, with no  intermediate 
frame-composition stage, the image typically flickers and/or ripples, an unavoidable 
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result of modifying display memory at  the same time that  it is being  scanned  for 
video data. The display  memory of the VGA makes it possible  to perform page flipping, 
which eliminates such problems. The basic premise of page  flipping is that  one  area 
of  display  memory is  displayed  while another is being modified. The modifications  never 
affect an  area of memory as it is providing video data, so no undesirable side effects 
occur. Once  the modification is complete,  the  modified buffer is selected  for display, 
causing the screen to change to the new  image in a single  frame’s time, typically 1/60th 
or 1/70th of a second. The  other buffer is then available for  modification. 
As described above, the VGA has 64K per  plane,  enough  to  hold two pages and  more 
in 640x350 mode 10H, but  not  enough for two pages in 640x480 mode  12H. For 
page  flipping, two non-overlapping  areas of  display  memory are  needed.  The sample 
program uses two 672x384 virtual pages, each 32,256 bytes long,  one starting at 
A000:OOOO and  the  other starting at A000:7E00. Flipping between the pages is  as 
simple as setting  the  start  address registers to  point to one display area  or  the other- 
but, as it  turns  out, that’s not as simple as it sounds. 
The timing of the switch  between pages is critical to achieving flicker-free animation. 
It is essential that  the  program never be modifying an  area of display  memory  as that 
memory is providing video data. Achieving this is surprisingly complicated on  the 
VGA,  however. 
The  problem is  as  follows. The start  address is latched by the VGA’s internal circuitry 
exactly once  per  frame, typically (but  not always on all clones) at  the start of the 
vertical sync pulse. The vertical sync status is, in fact, available  as bit  3 of the  Input 
Status 0 register, addressable  at 3BAH (in  monochrome  modes) or 3DAH (color). 
Unfortunately, by the time the vertical sync status is observed by a  program,  the  start 
address  for the  next  frame  has already been  latched, having happened  the  instant 
the vertical sync pulse began. That means that it’s no good to wait for vertical sync to 
begin,  then  set  the new start address; if  we did  that, we’d  have to wait until the next 
vertical sync pulse to start drawing, because the page  wouldn’t flip until then. 
Clearly,  what we want is to set the new start  address, then wait for  the  start of the 
vertical sync pulse, at which point we can  be  sure the page  has  flipped. However, we 
can’t just set the start  address and wait, because we might have the  extreme misfor- 
tune  to set one of the start  address registers before the start of vertical sync and  the 
other after, resulting  in  mismatched halves  of the start  address and a nasty jump of 
the displayed image for  one frame. 
One possible solution to this problem is to pick a  second  page  start  address  that  has 
a 0 value for the lower byte, so only the  Start Address High register ever needs to be 
set, but in the sample program  in Listing 23.1  I’ve gone for  generality and always set 
both bytes.  To  avoid mismatched  start  address bytes, the sample  program waits for 
pixel data  to be displayed, as indicated by the Display Enable status; this tells  us we’re 
somewhere  in the displayed portion of the  frame,  far  enough away from vertical sync 
so we can be sure  the new start  address will get  used  at the  next vertical sync. Once 
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the Display Enable status is observed, the  program sets the new start address, waits 
for vertical sync  to happen, sets the new pel panning state, and  then continues draw- 
ing. Don't worry about  the details right now; page flipping will come up again, at 
considerably greater  length, in later  chapters. 

As an  interesting  side  note,  be  aware  that if you run  DOS  software  under  a P multitasking  environment such as Windows NT timeslicing  delays  can  make  mis- 
matched  start  address  bytes  or  mismatched  start  address and pel  panning settings 
much more likely, for the  graphics  code  can be interrupted at any  time.  This  is  also 
possible,  although  much  less  likely,  under  non-multitasking  environments  such  as 
DOS, because  strategically  placed  interrupts  can  cause  the  same  sorts  of  prob- 
lems  there. For maximum  safety, you should  disable  interrupts around the  key 
portions ofyour page-flipping code,  although  here we run  into  the  problem  that if 
interrupts are disabled from the  time we start  looking for Display  Enable  until we 
set  the Pel Panning register, they  will be  offfor  far too  long, and keyboard,  mouse, 
and network  events  will  potentially  be  lost. Also, disabling  interrupts  won 't help  in 
true  multitasking  environments, which never  let  a  program hog the  entire CPL! 
This  is  one  reason thatpelpanning, although  indubitablyflashy,  isn 't widely used 
and should  be  reserved for only  those  cases where it j .  absolutely  necessary. 

Waiting for  the sync pulse has the side effect of causing program  execution to syn- 
chronize to the VGA's frame  rate of 60 or 70 frames per second, depending  on  the 
display mode. This synchronization has the useful consequence of causing the pro- 
gram to execute at the same speed  on any CPU that can draw  fast enough to complete 
the drawing in a single frame; the  program  just idles for the rest of each  frame  that  it 
finishes before the VGA  is finished displaying the previous frame. 
An important  point illustrated by the sample program is that while the VGA's display 
memory is far larger and  more versatile than is the case  with earlier  adapters,  it is 
nonetheless  a limited resource and must be used judiciously. The sample program 
uses VGA memory to store two 672x384 virtual pages, leaving  only 1024 bytes free to 
store  images. In this  case, the only  images needed are a colored ball and a blank  block 
with  which to erase it, so there is no  problem,  but many applications require dozens 
or  hundreds of images. The tradeoffs between virtual page size, page flipping, and 
image storage must always be kept in mind  when designing programs  for  the VGA. 
To see the  program  run in 640x200 16-color mode,  comment  out  the EQU line for 
MEDRES-VIDEO-MODE. 

The Hazards of VGA Clones 
Earlier, I said that any VGA that  doesn't  support  the features and functionality cov- 
ered in this book  can't properly be called VGA compatible. I also noted  that  there 
are some exceptions, however, and we've just come to the most prominent  one. You 
see, all VGAs really arecompatible with the IBM VGA's functionality when  it  comes to 



drawing pixels into display memory; all the write modes and  read modes and set/ 
reset capabilities and everything else  involved  with manipulating display memory 
really does work in the same way on all VGAs and VGA clones. That compatibility 
isn’t as airtight  when  it  comes to scanning pixels out of  display memory and  onto  the 
screen in certain infrequently-used ways,  however. 
The areas of incompatibility of which I’m aware are illustrated by the sample pro- 
gram,  and may in fact have caused you  to see some glitches when you ran Listing 
23.1. The  problem, which arises only on certain VGAs, is that some settings of the 
Row Offset register cause some pixels to be dropped  or displaced to the wrong place 
on  the screen; often, this happens only in conjunction with certain  start address 
settings. (In my experience, only VRAM (Video  RAM)-based VGAs exhibit this prob- 
lem, no  doubt  due to the way that pixel data is fetched  from VRAM in large blocks.) 
Panning  and large virtual bitmaps can be made to work  reliably, by careful selection 
of virtual bitmap sizes and start  addresses, but it’s  difficult;  that’s one of the reasons that 
most  commercial  software does not use  these  features, although a  number of  games do. 
The upshot is that if you’re going to use  oversized virtual bitmaps and  pan  around 
them, you should take great care to test your software on a wide  variety  of VRA” 
and DRAM-based VGAs. 

Just the Beginning 
That pretty well  covers the important points of the sample VGA program in Listing 23.1. 
There  are many VGA features we didn’t even touch  on,  but  the object was to give  you 
a feel for the variety  of features available on  the VGA, to convey the flexibility and 
complexity of the VGA’s resources, and in general to  give  you an initial sense of  what 
VGA programming is like. Starting with the  next  chapter, we’ll begin to explore the 
VGA systematically, on a more detailed basis. 

The Macro Assembler 
The  code in this book is written in  both C and assembly. I think C is a good develop- 
ment  environment,  but I believe that  often the best code  (although  not necessarily 
the easiest  to  write or  the most reliable) is written in assembly. This is  especially true 
of graphics code  for  the x86  family,  given segments, the string instructions, and  the 
asymmetric and limited register set, and for real-time programming of a  complex 
board like the VGA, there’s really no  other choice for the lowest-level code. 
Before I’m deluged with protests from C devotees, let  me add  that  the majority of  my 
productive work  is done in C; no programmer is immune to the laws  of time, and C 
is simply a more time-efficient environment in which to develop, particularly when 
working in a  programming team. In this book, however, we’re after the sine qua non 
of PC graphics-performance-and we can’t  get there  from  here  without a fair 
amount of  assembly language. 
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Now that we know  what the VGA looks like in  broad strokes and have a sense of what 
VGA programming is like, we can start looking at specific areas in depth.  In  the  next 
chapter, we’ll take a look at  the hardware assistance the VGA provides the CPU dur- 
ing display memory access. There  are  four latches and  four ALUs in those chips, 
along with some useful masks and comparators, and it’s that hardware that’s the 
difference between sluggish performance  and making the VGA get  up  and dance. 
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