
chaptyer 40

of songs, taxes, and the simplicity of complex
polygons

8?
$2::
I a 2” .2“ . ”

,~ h Irregular Polygonal Areas
“” Every so often, m5”daughter asks me to sing her to sleep. (If you’ve ever heard me

*_n.

sing, this may caus&you concern about either her hearing or her judgement, but
love knows no boun&j As any parent is well aware, singing a young child to sleep
can easily take several;&%&%, or until sunrise, whichever comes last. One night, run-
ning low on childre$s songs, I switched to a Beatles medley, and at long last her
breathing became s&w and regular. At the end, I softly sang “A Hard Day’s Night,”
then quietly stood i p to leave. As I tiptoed out, she said, in a voice not even faintly
tinged with slee #Dad, what do they mean, ‘working like a dog’? Chasing a stick?

That led us into a dikussion of idioms, which made about as much sense to her as an
explanation of quantnm mechanics. Finally, I fell back on my standard explanation
of the Universe, which is that a lot of the time it simply doesn’t make sense.
As a general principle, that explanation holds up remarkably well. (In fact, having
just done my taxes, I think Earth is actually run by blob-creatures from the planet
Mrxx, who are helplessly doubled over with laughter at the ridiculous things they
can make us do. “Let’s make them get Social Security numbers for their pets next
year!” they’re saying right now, gasping for breath.) Occasionally, however, one has
the rare pleasure of finding a corner of the Universe that makes sense, where every-
thing fits together as if preordained.
Filling arbitrary polygons is such a case.

That doesflFf;& ..”x’“

asense; people don’t chase sticks.”

74 1

Filling Arbitrary Polygons
In Chapter 38, I described three types of polygons: convex, nonconvex, and com-
plex. The RenderMan Companion, a terrific book by Steve Upstill (Addison-Wesley,
1990) has an intuitive definition of convex: If a rubber band stretched around a poly-
gon touches all vertices in the order they’re defined, then the polygon is convex. If a
polygon has intersecting edges, it’s complex. If a polygon doesn’t have intersecting
edges but isn’t convex, it’s nonconvex. Nonconvex is a special case of complex, and
convex is a special case of nonconvex. (Which, I’m well aware, makes nonconvex a
lousy name-noncomplex would have been better-but I’m following X Window
System nomenclature here.)
The reason for distinguishing between these three types of polygons is that the more
specialized types can be filled with markedly faster approaches. Complex polygons
require the slowest approach; however, that approach will serve to fill any polygon of
any sort. Nonconvex polygons require less sorting, because edges never cross. Con-
vex polygons can be filled fastest of all by simply scanning the two sides of the polygon,
as we saw in Chapter 39.
Before we dive into complex polygon filling, I’d like to point out that the code in this
chapter, like all polygon filling code I’ve ever seen, requires that the caller describe
the type of the polygon to be filled. Often, however, the caller doesn’t know what
type of polygon it’s passing, or specifies complex for simplicity, because that will
work for all polygons; in such a case, the polygon filler will use the slow complex-fill
code even if the polygon is, in fact, a convex polygon. In Chapter 41, I’ll discuss one
way to improve this situation.

Active Edges
The basic premise of filling a complex polygon is that for a given scan line, we deter-
mine all intersections between the polygon’s edges and that scan line and then fill
the spans between the intersections, as shown in Figure 40.1. (Section 3.6 of Foley
and van Dam’s Computer Guphics, Second Edition provides an overview of this and
other aspects of polygon filling.) There are several rules that might be used to deter-
mine which spans are drawn and which aren’t; we’ll use the odd/even rule, which
specifies that drawing turns on after odd-numbered intersections (first, third, and so
on) and off after even-numbered intersections.
The question then becomes how can we most efficiently determine which edges
cross each scan line and where? As it happens, there is a great deal of coherence
from one scan line to the next in a polygon edge list, because each edge starts at a
given Y coordinate and continues unbroken until it ends. In other words, edges
don’t leap about and stop and start randomly; the X coordinate of an edge at one
scan line is a consistent delta from that edge’s X coordinate at the last scan line, and
that is consistent for the length of the line.

742 Chapter 40

Intersection #2 Intersection #3
turns off turns on

Intersection #1 0
turns on
drawing

Scan line being

0 0 0 0 0 0

Filling one scan line byfinding intersecting edges.
Figure 40.1

This allows us to reduce the number of edges that must be checked for intersection;
on any given scan line, we only need to check for intersections with the currently
active edges-edges that start on that scan line, plus all edges that start on earlier
(above) scan lines and haven't ended yet-as shown in Figure 40.2. This suggests
that we can proceed from the top scan line of the polygon to the bottom, keeping a

Checking currently active edges (solid lines).
Figure 40.2

Of Songs, Taxes, and the Simpliciv of Complex Polygons 743

running list of currently active edges-called the active edge table (AET)-with the
edges sorted in order of ascending X coordinate of intersection with the current
scan line. Then, we can simply fill each scan line in turn according to the list of active
edges at that line.
Maintaining the AET from one scan line to the next involves three steps: First, we
must add to the AET any edges that start on the current scan line, making sure to
keep the AET X-sorted for efficient odd/even scanning. Second, we must remove
edges that end on the current scan line. Third, we must advance the X coordinates
of active edges with the same sort of error term-based, Bresenham’s-like approach
we used for convex polygons, again ensuring that the AET is X-sorted after advanc-
ing the edges.
Advancing the X coordinates is easy. For each edge, we’ll store the current X coordi-
nate and all required error term information, and we’ll use that to advance the edge
one scan line at a time; then, we’ll resort the AET by X coordinate as needed. Re-
moving edges as they end is also easy; we’ll just count down the length of each active
edge on each scan line and remove an edge when its count reaches zero. Adding
edges as their tops are encountered is a tad more complex. While there are a num-
ber of ways to do this, one particularly efficient approach is to start out by putting all
the edges of the polygon, sorted by increasing Y coordinate, into a single list, called
the global edge table (GET). Then, as each scan line is encountered, all edges at the
start of the GET that begin on the current scan line are moved to the AET; because
the GET is Y-sorted, there’s no need to search the entire GET. For still greater effi-
ciency, edges in the GET that share common Y coordinates can be sorted by increasing
X coordinate; this ensures that no more than one pass through the AET per scan
line is ever needed when adding new edges from the GET in such a way as to keep
the AET sorted in ascending X order.
What form should the GET and AET take? Linked lists of edge structures, as shown
in Figure 40.3. With linked lists, all that’s required to move edges from the GET to
the AET as they become active, sort the AET, and remove edges that have been fully
drawn is the exchanging of a few pointers.
In summary, we’ll initially store all the polygon edges in Yprimary/X-secondary sort
order in the GET, complete with initial X and Y coordinates, error terms and error
term adjustments, lengths, and directions of X movement for each edge. Once the
GET is built, we’ll do the following:
1. Set the current Y coordinate to the Y coordinate of the first edge in the GET.
2. Move all edges with the current Y coordinate from the GET to the AET, removing them

from the GET and maintaining the X-sorted order of the AET.
3. Draw all odd-to-even spans in the AET at the current Y coordinate.
4. Count down the lengths of all edges in the AET, removing any edges that are done, and

advancing the X coordinates of all remaining edges in the AET by one scan line.

744 Chapter 40

Global Edge Table (GET)

Count -
Next * edge Next 'edge

Active Edge Table (Am)

Count - Count - Count - Count -
Next 'edge Next 'edge Next 'edge

The global and active edge tables as linked lists.
Figure 40.3

5. Sort the AET in order of ascending X coordinate.
6. Advance the current Y coordinate by one scan line.
7. If either the AET or GET isn't empty, go to step 2.

That's really all there is to it. Compare Listing 40.1 to the fast convex polygon filling
code from Chapter 39, and you'll see that, contrary to expectation, complex poly-
gon filling is indeed one of the more sane and sensible corners of the universe.

LISTING 40.1 L40- 1 .C
/* C o l o r - f i l l s an a r b i t r a r i l y - s h a p e d p o l y g o n d e s c r i b e d by V e r t e x L i s t .

I f t h e f i r s t and l a s t p o i n t s i n V e r t e x L i s t a r e n o t t h e same, t h e p a t h
a r o u n d t h e p o l y g o n i s a u t o m a t i c a l l y c l o s e d . All v e r t i c e s a r e o f f s e t
b y (X O f f s e t , Y O f f s e t) . R e t u r n s 1 f o r s u c c e s s , 0 i f memory a l l o c a t i o n
f a i l e d . All C c o d e t e s t e d w i t h B o r l a n d C++.
I f t h e p o l y g o n s h a p e i s known i n advance , speed ie r p rocess ing may be
enab led by spec i f y ing t he shape as f o l l ows : " convex" - a rubber band
s t r e t c h e d a r o u n d t h e p o l y g o n w o u l d t o u c h e v e r y v e r t e x i n o r d e r :
"nonconvex" - t h e p o l y g o n i s n o t s e l f - i n t e r s e c t i n g , b u t n e e d n o t b e
convex: "complex" - t h e p o l y g o n may b e s e l f - i n t e r s e c t i n g , o r , i n d e e d ,
any s o r t o f p o l y g o n a t all. Complex will w o r k f o r a l l p o l y g o n s : c o n v e x
i s f a s t e s t . U n d e f i n e d r e s u l t s will occur i f convex i s s p e c i f i e d f o r a
nonconvex o r complex po lygon.
D e f i n e CONVEX-CODELLINKED i f t h e f a s t c o n v e x p o l y g o n f i l l i n g c o d e f r o m
Chapter 38 i s l i n k e d i n . O t h e r w i s e , c o n v e x p o l y g o n s a r e
h a n d l e d b y t h e c o m p l e x p o l y g o n f i l l i n g c o d e .
Nonconvex i s handled as complex i n t h i s i m p l e m e n t a t i o n . See t e x t f o r a
d i s c u s s i o n o f f a s t e r n o n c o n v e x h a n d l i n g . * /

Pi n c l u d e < s t d i o . h >
inc lude <math .h>
P i f d e f -TURBOC-

Of Songs, Taxes, and the Simplicity of Complex Polygons 745

i n c l u d e < a 1 1 oc. h>
e l s e I* MSC *I
#i n c l u d e <mal 1 oc. h>
#endi f
i n c l u d e " p o l y g o n . h"

d e f i n e SWAP(a,b) {temp - a: a - b: b - temp:)

s t r u c t E d g e S t a t e (
s t ruc t EdgeSta te *Nex tEdge :
i n t
i n t
i n t
i n t
i n t
i n t
i n t
i n t

1 :

e x t e r n
e x t e r n
s t a t i c
s t a t i c
s t a t i c
s t a t i c
s t a t i c

X :
S t a r t Y :
WholePixelXMove;
X D i r e c t i on:
E r ro rTe rm:
ErrorTermAdjUp:
ErrorTermAdjDown;
Count :

v o i d OrawHorizontalLineSeg(int. i n t . i n t , i n t) :
i n t FillConvexPolygon(struct P o i n t L i s t H e a d e r *, i n t . i n t . i n t) :
v o i d B u i l d G E T (s t r u c t P o i n t L i s t H e a d e r *, s t r u c t E d g e S t a t e *, i n t . i n t) :
vo id MoveXSor tedToAET(in t) :
v o i d S c a n O u t A E T (i n t . i n t) :
vo id AdvanceAET(vo id1 :
v o i d X S o r t A E T (v o i d) ;

I* P o i n t e r s t o g l o b a l e d g e t a b l e (GET) a n d a c t i v e e d g e t a b l e (A E T) *I
s t a t i c s t r u c t E d g e S t a t e * G E T P t r . * A E T P t r ;

i n t F i l l P o l y g o n (s t r u c t P o i n t L i s t H e a d e r * V e r t e x L i s t . i n t C o l o r .
i n t PolygonShape. i n t X O f f s e t . i n t Y O f f s e t)

s t r u c t E d g e S t a t e * E d g e T a b l e B u f f e r :
i n t C u r r e n t Y :

i f d e f CONVEX-CODELLINKED
I* P a s s c o n v e x p o l y g o n s t h r o u g h t o f a s t c o n v e x p o l y g o n f i l l e r *I
i f (PolygonShape - CONVEX)

return(FillConvexPolygon(VertexList. C o l o r , X O f f s e t . Y O f f s e t)) ;
#endl f

I* It t a k e s a minimum o f 3 v e r t i c e s t o c a u s e a n y p i x e l s t o b e

i f (V e r t e x L i s t - > L e n g t h < 3)

I* Get enough memory t o s t o r e t h e e n t i r e edge t a b l e *I
i f ((E d g e T a b l e B u f f e r -

d r a w n : r e j e c t p o l y g o n s t h a t a r e g u a r a n t e e d t o b e i n v i s i b l e *I

r e t u r n (1) :

(s t r u c t E d g e S t a t e *) (m a l l o c (s i z e o f (s t r u c t E d g e s t a t e) *
V e r t e x L i s t - > L e n g t h))) - NULL)

r e t u r n (0) : I* c o u l d n ' t g e t memory f o r t h e e d g e t a b l e * /
I* B u i l d t h e g l o b a l e d g e t a b l e *I
B u i l d G E T (V e r t e x L i s t . E d g e T a b l e B u f f e r , X O f f s e t , Y O f f s e t) ;
I* Scan down t h r o u g h t h e p o l y g o n e d g e s , o n e s c a n l i n e a t a t i m e ,

AETPtr - NULL: I* i n i t i a l i z e t h e a c t i v e e d g e t a b l e t o e m p t y * I
Cur ren tY - GETPt r ->S ta r tY ; /* s t a r t a t t h e t o p p o l y g o n v e r t e x *I
w h i l e ((G E T P t r !- NULL) 1 1 (AETPtr !- NULL)) (

so l o n g a s a t l e a s t one edge remains i n e i t h e r t h e GET o r AET *I

MoveXSortedToAET(CurrentY): I* upda te AET f o r t h i s s c a n l i n e * I
ScanOutAET(Cur ren tY. Co lor) ; I* draw t h i s scan l i n e f r o m AET *I

746 Chapter 40

AdvanceAETO;
XSor tAETO;
C u r r e n t Y U ;

1

/* advance AET edges 1 scan l i n e * /
/* r e s o r t on X * /
/* advance t o t h e n e x t s c a n l i n e * /

/ * Re lease t he memory we 've a l l oca ted and we ' re done */
f r e e (E d g e T a b l e B u f f e r 1 ;
r e t u r n (1) ;

1

/* Creates a GET i n t h e b u f f e r p o i n t e d t o b y N e x t F r e e E d g e S t r u c f r o m
t h e v e r t e x l i s t . Edge e n d p o i n t s a r e f l i p p e d , i f n e c e s s a r y , t o
g u a r a n t e e a l l e d g e s g o t o p t o b o t t o m . T h e GET i s s o r t e d p r i m a r i l y
by ascend ing Y s t a r t c o o r d i n a t e , a n d s e c o n d a r i l y b y a s c e n d i n g X
s t a r t c o o r d i n a t e w i t h i n e d g e s w i t h common Y c o o r d i n a t e s . * /

s t a t i c v o i d B u i l d G E T (s t r u c t P o i n t L i s t H e a d e r * V e r t e x L i s t .

{
s t r u c t E d g e S t a t e * N e x t F r e e E d g e S t r u c . i n t X O f f s e t . i n t Y O f f s e t)

i n t i. S t a r t X . S t a r t Y . EndX. EndY. De l taY. De l taX. Wid th , temp;
s t ruc t EdgeSta te *NewEdgePt r ;
s t r u c t E d g e S t a t e * F o l l o w i n g E d g e , * * F o l l o w i n g E d g e L i n k ;
s t r u c t P o i n t * V e r t e x P t r :

/ * S c a n t h r o u g h t h e v e r t e x l i s t a n d p u t a l l n o n - 0 - h e i g h t e d g e s i n t o

V e r t e x P t r - V e r t e x L i s t - > P o i n t P t r ; / * p o i n t t o t h e v e r t e x l i s t * /
GETPtr - NULL; / * i n i t i a l i z e t h e g l o b a l e d g e t a b l e t o e m p t y * /
f o r (i - 0; i < V e r t e x L i s t - > L e n g t h ; i++) {

t h e GET, s o r t e d by i n c r e a s i n g Y s t a r t c o o r d i n a t e * /

/ * C a l c u l a t e t h e e d g e h e i g h t a n d w i d t h * /
S t a r t X - V e r t e x P t r C i 1 . X + X O f f s e t ;
S t a r t Y - V e r t e x P t r C i 1 . Y + Y O f f s e t ;
/ * T h e e d g e r u n s f r o m t h e c u r r e n t p o i n t t o t h e p r e v i o u s o n e */
i f (i - 0) I

/ * Wrap b a c k a r o u n d t o t h e e n d o f t h e l i s t * /
EndX - VertexPtrCVertexList->Length-1l.X + X O f f s e t ;
EndY - V e r t e x P t r [V e r t e x L i s t - > L e n g t h - 1 l . Y + Y O f f s e t ;

EndX - V e r t e x P t r C i - 1 1 . X + X O f f s e t ;
EndY - V e r t e x P t r C i - l l . Y + Y O f f s e t ;

1 e l s e I

1
I* Make s u r e t h e e d g e r u n s t o p t o b o t t o m */
i f (S t a r t Y > EndY) {

SWAP(StartX. EndX);
SWAP(StartY. EndY);

3
/* S k i p i f t h i s c a n ' t e v e r b e a n a c t i v e e d g e (h a s 0 h e i g h t) * /
i f ((D e l t a Y - EndY - S t a r t Y) !- 0) {

/ * A l l o c a t e s p a c e f o r t h i s e d g e ' s i n f o , a n d fill i n t h e

NewEdgePtr - NextFreeEdgeStruc++:
NewEdgePt r ->XDi rec t ion - /* d i r e c t i o n i n w h i c h X moves */

Wid th - abs(De1taX):
NewEdgePtr->X - S t a r t X ;
NewEdgePt r ->Star ty - S t a r t Y ;
NewEdgePtr->Count - Del taY;
NewEdgePtr->ErrorTermAdjDown - Del taY:
i f (D e l t a X >- 0) /* i n i t i a l e r r o r t e r m g o i n g L->R */

e l s e / * i n i t i a l e r r o r t e r m g o i n g R - > L */

s t r u c t u r e * /

((D e l t a X - EndX - S t a r t X) > 0) ? 1 : -1;

NewEdgePtr->ErrorTerm - 0;

NewEdgePtr->ErrorTerm - - 0 e l t a Y + 1:

Of Songs, Taxes, and the Simplicity of Complex Polygons 747

i f (D e l t a Y >- W i d t h) (/* Y-major edge */
NewEdgePtr->WholePixelXMove - 0;
NewEdgePtr->ErrorTermAdjUp - Width ;

NewEdgePtr->WholePixelXMove -
NewEdgePtr->ErrorTermAdjUp - Width X Del taY;

1 e l s e I I* X-major edge */

(W i d t h I D e l t a Y) * NewEdgePt r ->XDi rec t ion :

I
I* L i n k t h e new edge i n t o t h e GET so t h a t t h e edge l i s t i s

s t i l l s o r t e d b y Y coo rd ina te , and by X c o o r d i n a t e f o r all
edges w i t h t h e same Y c o o r d i n a t e *I

F o l l o w i n g E d g e L i n k - hGETPtr;
f o r (; :) {

Fo l low ingEdge - * F o l l o w i n g E d g e L i n k ;
i f ((F o l l o w i n g E d g e - NULL) I I

(F o l l o w i n g E d g e - > S t a r t y > S t a r t Y) 1 1
((F o l l o w i n g E d g e - > S t a r t y - S t a r t Y 1 &h
(Fo l low ingEdge->X >- S t a r t X))) I

NewEdgePtr->NextEdge - Fol lowingEdge;
* F o l l o w i n g E d g e L i n k - NewEdgePtr;
b reak :

I
F o l l o w i n g E d g e L i n k - &FollowingEdge->NextEdge;

3
1

1
1

I* S o r t s a l l edges c u r r e n t l y i n t h e a c t i v e edge t a b l e i n t o a s c e n d i n g
o r d e r o f c u r r e n t X c o o r d i n a t e s *I

s t a t i c v o i d X S o r t A E T O {
s t ruc t EdgeSta te *Cur ren tEdge . * *Cur ren tEdgePt r . *TempEdge;
i n t Swapoccurred;

I* Scan t h r o u g h t h e AET and swap any a d j a c e n t e d g e s f o r w h i c h t h e
second edge i s a t a l o w e r c u r r e n t X c o o r d t h a n t h e f i r s t e d g e .
R e p e a t u n t i l n o f u r t h e r s w a p p i n g i s needed *I

do
i f (AETPtr !- NULL) (

Swapoccurred - 0:
C u r r e n t E d g e P t r - &AETPtr;
w h i l e ((C u r r e n t E d g e - *CurrentEdgePtr)->NextEdge !- NULL) {

I* The second edge has a lower X t h a n t h e f i r s t ;

TempEdge - CurrentEdge->NextEdge->NextEdge:
*Cur ren tEdgePt r - CurrentEdge->NextEdge:
CurrentEdge->NextEdge->NextEdge - Curren tEdge;
CurrentEdge->NextEdge - TempEdge:
Swapoccurred - 1:

i f (Cur ren tEdge->X > CurrentEdge->NextEdge->X)

swap them i n t h e AET *I

1
C u r r e n t E d g e P t r - &(*CurrentEdgePtr)->NextEdge;

1
I wh i le (Swapoccur red !- 0) :

I
1

I* Advances each edge i n t h e AET by one scan l i n e .

s t a t i c v o i d AdvanceAETO I
Removes e d g e s t h a t h a v e b e e n f u l l y s c a n n e d . */

s t ruc t EdgeSta te *Cur ren tEdge . * *Cur ren tEdgePt r :

748 Chapter 40

/* Count down and remove or advance each edge i n t h e AET */
C u r r e n t E d g e P t r - &AETPtr:
w h i l e ((C u r r e n t E d g e = *Cur ren tEdgePt r) !- NULL) I

/* Count o f f one scan l i n e f o r t h i s edge * /
i f ((- - (C u r r e n t E d g e - > C o u n t)) -- 0) I

/* Th is edge i s f i n i s h e d , s o remove i t f r o m t h e AET *I
*Cur ren tEdgePt r - CurrentEdge->NextEdge:

I* Advance the edge ' s X coo rd ina te by m in imum move * /
CurrentEdge->X +- CurrentEdge->WholePixelXMove:
/ * D e t e r m i n e w h e t h e r i t ' s t i m e f o r X t o advance one ex t ra * /
i f ((Cur ren tEdge->Er ro rTe rm +-

I e l s e t

CurrentEdge->ErrorTermAdjUp) > 0) t
CurrentEdge->X +- Cur ren tEdge->XDi rec t i on :
Cur ren tEdge->Er rorTerm -- CurrentEdge->ErrorTermAdjDown:

I
Curren tEdgePt r - &CurrentEdge->NextEdge;

1
I

1

/* Moves a l l edges t h a t s t a r t a t t h e s p e c i f i e d Y c o o r d i n a t e f r o m t h e

s t a t i c v o i d M o v e X S o r t e d T o A E T (i n t YToMove) I
GET t o t h e AET, m a i n t a i n i n g t h e X s o r t i n g o f t h e AET. * /

s t r u c t E d g e s t a t e *AETEdge. **AETEdgePtr, *TempEdge:
i n t C u r r e n t X :

/ * The GET i s Y s o r t e d . Any edges t h a t s t a r t a t t h e d e s i r e d Y
c o o r d i n a t e will be f i r s t i n t h e GET, s o w e ' l l move edges f rom
t h e GET t o AET u n t i l t h e f i r s t edge l e f t i n t h e GET i s n o l o n g e r
a t t h e d e s i r e d Y c o o r d i n a t e . A l s o , t h e GET i s X s o r t e d w i t h i n
each Y c o o r d i n a t e , s o each success ive edge we add t o t h e AET i s
g u a r a n t e e d t o b e l o n g l a t e r i n t h e AET t h a n t h e one j u s t added. * /

AETEdgePtr = &AETPtr:
w h i l e ((G E T P t r !- NULL) && (GETPt r ->Star tY - YToMove)) I

C u r r e n t X - GETPtr->X;
/ * L i n k t h e new edge i n t o t h e AET so t h a t t h e AET i s s t i l l

f o r (: : I I
s o r t e d b y X c o o r d i n a t e */

AETEdge - *AETEdgePtr:
i f ((AETEdge -- NULL) 1 1 (AETEdge->X >- C u r r e n t X)) I

TempEdge - GETPtr->NextEdge:
fAETEdgePtr - GETPtr: /* l i n k t h e edge i n t o t h e AET */
GETPtr->NextEdge - AETEdge:
AETEdgePtr - &GETPtr->NextEdge:
GETPtr - TempEdge; / * u n l i n k t h e e d g e f r o m t h e GET *I
break :

AETEdgePtr - &AETEdge->NextEdge:
} e l s e I

}
I

1
I

/ * F i l l s t h e s c a n l i n e d e s c r i b e d b y t h e c u r r e n t AET a t t h e s p e c i f i e d Y

s t a t i c v o i d S c a n O u t A E T (i n t YToScan. i n t C o l o r) {
c o o r d i n a t e i n t h e s p e c i f i e d c o l o r , u s i n g t h e o d d l e v e n fill r u l e * I

i n t L e f t X :
s t r u c t E d g e s t a t e * C u r r e n t E d g e :

Of Songs, Taxes, and the Simplicity of Complex Polygons 749

/* Scan t h r o u g h t h e AET, d r a w i n g l i n e s e g m e n t s a s e a c h p a i r o f e d g e
c r o s s i n g s i s e n c o u n t e r e d . The n e a r e s t p i x e l on o r t o t h e r i g h t
o f l e f t edges i s d r a w n , a n d t h e n e a r e s t p i x e l t o t h e l e f t o f b u t
n o t on r i g h t edges i s drawn * /

Cur ren tEdge = AETPtr;
w h i l e (C u r r e n t E d g e !- NULL) I

L e f t X = Cur ren tEdge->X:
Cur ren tEdge - CurrentEdge->NextEdge;
OrawHorizontalLineSeg(YToScan. L e f t X . C u r r e n t E d g e - > X - 1 . C o l o r) :
Cur ren tEdge - CurrentEdge->NextEdge:

I
1

Complex Polygon Filling: An Implementation
Listing 40.1 just shown presents a function, FillPolygon(), that fills polygons of all
shapes. If CONVEX-FILL-LINKED is defined, the fast convex fill code from Chap-
ter 39 is linked in and used to draw convex polygons. Otherwise, convex polygons
are handled as if they were complex. Nonconvex polygons are also handled as com-
plex, although this is not necessary, as discussed shortly.
Listing 40.1 is a faithful implementation of the complex polygon filling approach
just described, with separate functions corresponding to each of the tasks, such as
building the GET and X-sorting the AET. Listing 40.2 provides the actual drawing
code used to fill spans, built on a draw pixel routine that is the only hardware depen-
dency anywhere in the C code. Listing 40.3 is the header file for the polygon filling
code; note that it is an expanded version of the header file used by the fast convex
polygon fill code from Chapter 39. (They may have the same name but are not the
same file!) Listing 40.4 is a sample program that, when linked to Listings 40.1 and
40.2, demonstrates drawing polygons of various sorts.

LISTING 40.2 LAO-2.C
/ * Draws a l l p i x e l s i n t h e h o r i z o n t a l l i n e segmen t passed i n . f r om

(L e f t X . Y) t o (R i g h t X . Y) . i n t h e s p e c i f i e d c o l o r i n mode 1 3 h . t h e
VGA's 320x200 256-co lo r mode. Bo th Le f tX and R igh tX a re d rawn . No
d r a w i n g will t a k e p l a c e i f L e f t X > R i g h t X . * /

#i ncl ude <dos. h>
Pi ncl ude "po lygon. h"

d e f i n e SCREEN-WIDTH 320
d e f i n e SCREEN-SEGMENT OxAOOO

s t a t i c v o i d O r a w P i x e l (i n t . i n t . i n t) :

v o i d DrawHor izonta lL ineSeg(Y, L e f t X . R i g h t X . C o l o r) (
i n t X ;

/ * Draw each p i x e l i n t h e h o r i z o n t a l l i n e segment, s t a r t i n g w i t h

f o r (X - L e f t X : X <- R i g h t X ; X++)
t h e l e f t m o s t one * I

DrawPixe l (X . Y . C o l o r) ;
1

750 Chapter 40

I* Draws t h e p i x e l a t (X . Y) i n c o l o r C o l o r i n VGA mode 13h * I
s t a t i c v o i d D r a w P i x e l (i n t X , i n t Y . i n t C o l o r) {

u n s i g n e d c h a r f a r * S c r e e n P t r :

i l i f d e f -TURBOC-

e l s e I* MSC 5.0 * /
S c r e e n P t r - MK_FP(SCREEN-SEGMENT. Y * SCREEN-WIDTH + X) :

FPLSEG(ScreenPtr) - SCREENLSEGMENT:
FP-OFF(ScreenPtr1 = Y * SCREENKWIDTH + X:

*ScreenPt r = (u n s i g n e d c h a r) C o l o r :
#end i f

1

LISTING 40.3 POLYG0N.H
I* POLYG0N.H: Header f i l e f o r p o l y g o n - f i l l i n g code *I

d e f i n e C O N V E X 0
d e f i n e NONCONVEX 1
d e f i n e COMPLEX 2

I* D e s c r i b e s a s i n g l e p o i n t (u s e d f o r a s i n g l e v e r t e x) * I
s t r u c t P o i n t I

i n t X ; I* X c o o r d i n a t e *I
i n t Y ; I* Y c o o r d i n a t e * I

1 :
I* D e s c r i b e s a s e r i e s o f p o i n t s (u s e d t o s t o r e a l i s t o f v e r t i c e s t h a t

d e s c r i b e a p o l y g o n ; e a c h v e r t e x c o n n e c t s t o t h e t w o a d j a c e n t
v e r t i c e s ; t h e l a s t v e r t e x i s assumed t o c o n n e c t t o t h e f i r s t) * I

i n t L e n g t h ; I* il o f p o i n t s *I
s t r u c t P o i n t * P o i n t P t r ; I* p o i n t e r t o l i s t o f p o i n t s * /

1 :
I* D e s c r i b e s t h e b e g i n n i n g a n d e n d i n g X c o o r d i n a t e s o f a s i n g l e

h o r i z o n t a l l i n e (u s e d o n l y b y f a s t p o l y g o n fill code) *I
s t r u c t H L i n e {

i n t X S t a r t : I* X c o o r d i n a t e o f l e f t m o s t p i x e l i n l i n e * I
i n t XEnd; I* X c o o r d i n a t e o f r i g h t m o s t p i x e l i n l i n e * I

s t r u c t P o i n t L i s t H e a d e r {

1 :
I* D e s c r i b e s a l e n g t h - l o n g s e r i e s o f h o r i z o n t a l l i n e s , a l l assumed t o

be on c o n t i g u o u s s c a n l i n e s s t a r t i n g a t Y S t a r t a n d p r o c e e d i n g
downward (used t o d e s c r i b e a s c a n - c o n v e r t e d p o l y g o n t o t h e
l o w - l e v e l h a r d w a r e - d e p e n d e n t d r a w i n g c o d e) (u s e d o n l y b y f a s t
p o l y g o n fill code) . * /

i n t L e n g t h : / * il o f h o r i z o n t a l l i n e s *I
i n t Y S t a r t : I* Y c o o r d i n a t e o f t o p m o s t l i n e *I
s t r u c t H L i n e * H L i n e P t r ; I* p o i n t e r t o l i s t o f h o r z l i n e s *I

s t r u c t H L i n e L i s t {

1 ;

LISTING 40.4 L40-4.C
I* Sample program t o e x e r c i s e t h e p o l y g o n - f i l l i n g r o u t i n e s *I

i n c l u d e < c o n i o . h>
#i ncl ude <dos . h>
#i ncl ude "po lygon. h"

d e f i n e DRAW_POLYGON(PointList,Color,Shape.X.Y) \
Po lygon.Length = s i z e o f (P o i n t L i s t) / s i z e o f (s t r u c t P o i n t) : \
P o l y g o n . P o i n t P t r - P o i n t L i s t ; \
F i l l P o l y g o n (& P o l y g o n . C o l o r , Shape, X . Y) :

Of Songs, Taxes, and the Simplicity of Complex Polygons 751

v o i d m a i n (v o i d) :
e x t e r n i n t F i l l P o l y g o n (s t r u c t P o i n t L i s t H e a d e r *, i n t . i n t . i n t . i n t) ;

v o i d m a i n 0 (
i n t i, j;
s t r u c t P o i n t L i s t H e a d e r P o l y g o n :
s t a t i c s t r u c t P o i n t P o l y g o n l [l -
s t a t i c s t r u c t P o i n t P o l y g o n 2 C I - ~(0.0).~100.150~.~320,0~,~0,200~,~220.50~,~320~200~~

~{0.01.~320.0~.~320.200~,~0,2001,~0,0~,~50,50~,
(270.50~.{270.150~.(50.150~,~50.50~~:

s t a t i c s t r u c t P o i n t P o l y g o n 3 C l -
~(0.0).{10.0}.(105.1851,{260.30),~15,150},~5,150~,~5
{260.53,~300,5~,~300~151,~110,200~,~100.200~,~0,10~

s t a t i c s t r u c t P o i n t P o l y g o n 4 C I -
s t a t i c s t r u c t P o i n t T r i a n g l e l C l - { (30 .0 } . (15 .20 } . (0 .0 } } ;
s t a t i c s t r u c t P o i n t T r i a n g l e 2 C l - {(30.20).(15.0).{0.20)):
s t a t i c s t r u c t P o i n t T r i a n g l e 3 C l - ~ ~ 0 . 2 0 ~ . ~ 2 0 . 1 0 ~ . ~ 0 . 0 1 ~ :
s t a t i c s t r u c t P o i n t T r i a n g l e 4 C l - {{20,20).(20.0}.~0.10}):
u n i o n REGS r e g s e t :

~(0.0}.~30,-20).~30.0).~0,20},~-30,0~,~-30,-20~~:

i

/* S e t t h e d i s p l a y t o VGA mode 13h. 320x200 256-co lo r mode *I
regse t . x .ax - 0x0013;
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) ;

I* Draw t h r e e c o m p l e x p o l y g o n s */
DRAW-POLYGON(Polygon1. 15. COMPLEX, 0. 0) ;
g e t c h 0 ; I* w a i t f o r a keyp ress */
DRAW-POLYGON(Polygon2. 5 . COMPLEX. 0. 0):
g e t c h 0 : I* w a i t f o r a keyp ress * I
DRAW-POLYGON(Polygon3, 3. COMPLEX. 0, 0):
g e t c h 0 : I* w a i t f o r a keyp ress *I

I* Draw some ad jacent nonconvex po lygons *I
f o r (i - 0 : i < 5 : i++) (

f o r (j -0: j < 8 : j++) {
ORAW~POLYGON(Polygon4. 16+i*8+j . NONCONVEX. 40+(i *60) .

3 0 + (j * 2 0)) ;
}

1
g e t c h 0 : I* w a i t f o r a keyp ress *I

/* D r a w a d j a c e n t t r i a n g l e s a c r o s s t h e s c r e e n *I
f o r (j - 0 ; j<-80: j+-20) (

f o r (i - 0 : i < 2 9 0 : i +- 30) (
DRAW-POLYGON(Triangle1. 2 , CONVEX, i. j) :
DRAW-POLYGON(Triangle2. 4 . CONVEX. i+15. j) :

1
1
f o r (j - 1 0 0 : j < - 1 7 0 ; j+-20) I

I* Do a r o w o f p o i n t i n g - r i g h t t r i a n g l e s * I
f o r (i - 0 : i < 2 9 0 : i +- 20) I

1
I* Do a row of p o i n t i n g - l e f t t r i a n g l e s h a l f w a y b e t w e e n one row

o f p o i n t i n g - r i g h t t r i a n g l e s a n d t h e n e x t , t o fit between * /
f o r (i - 0 ; i < 2 9 0 : i +- 20) (

DRAW-POLYGON(Triangle4. 1, CONVEX, i, .$+lo):
1

DRAW-POLYGON(Triangle3. 40. CONVEX. i. j) :

752 Chapter 40

1
g e t c h 0 ; /* w a i t f o r a keypress */

/* R e t u r n t o t e x t mode and e x i t */
r e g s e t . x . a x - 0x0003;
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) :

Listing 40.4 illustrates several interesting aspects of polygon filling. The first and third
polygons drawn illustrate the operation of the odd/even fill rule. The second polygon
drawn illustrates how holes can be created in seemingly solid objects; an edge runs from
the outside of the rectangle to the inside, the edges comprising the hole are defined,
and then the same edge is used to move back to the outside; because the edges join
seamlessly, the rectangle appears to form a solid boundary around the hole.
The set of V-shaped polygons drawn by Listing 40.4 demonstrate that polygons shar-
ing common edges meet but do not overlap. This characteristic, which I discussed at
length in Chapter 38, is not a trivial matter; it allows polygons to fit together without
fear of overlapping or missed pixels. In general, Listing 40.1 guarantees that poly-
gons are filled such that common boundaries and vertices are drawn once and only
once. This has the sideeffect for any individual polygon of not drawing pixels that
lie exactly on the bottom or right boundaries or at vertices that terminate bottom or
right boundaries.
By the way, I have not seen polygon boundary filling handled precisely this way else-
where. The boundary filling approach in Foley and van Dam is similar, but seems to
me to not draw all boundary and vertex pixels once and only once.

More on Active Edges
Edges of zero height-horizontal edges and edges defined by two vertices at the
same location-never even make it into the GET in Listing 40.1. A polygon edge of
zero height can never be an active edge, because it can never intersect a scan line; it
can only run along the scan line, and the span it runs along is defined not by that
edge but by the edges that connect to its endpoints.

Performance Considerations
How fast is Listing 40.1? When drawing triangles on a 20-MHz 386, it’s less than one-fifth
the speed of the fast convex polygon fill code. However, most of that time is spent
drawing individual pixels; when Listing 40.2 is replaced with the fast assembly line
segment drawing code in Listing 40.5, performance improves by two and one-half
times, to about half as fast as the fast convex fill code. Even after conversion to assem-
bly in Listing 40.5, DrawHorizontalLineSeg still takes more than half of the total
execution time, and the remaining time is spread out fairly evenly over the various
subroutines in Listing 40.1. Consequently, there’s no single place in which it’s pos-
sible to greatly improve performance, and the maximum additional improvement

Of Songs, Taxes, and the Simplicity of Complex Polygons 753

that's possible looks to be a good deal less than two times; for that reason, and be-
cause of space limitations, I'm not going to convert the rest of the code to assembly.
However, when filling a polygon with a great many edges, and especially one with a
great many active edges at one time, relatively more time would be spent traversing
the linked lists. In such a case, conversion to assembly (which does a very good job
with linked list processing) could pay off reasonably well.

LISTING 40.5 L40-5.ASM
; Draws all p i x e l s i n t h e h o r i z o n t a l l i n e segment passed i n , f r o m
: (L e f t X . Y) t o (R i g h t X . Y) , i n t h e s p e c i f i e d c o l o r i n mode 13h . t he
: VGA's 320x200 256 -co lo r mode. No d raw ing will t a k e p l a c e i f
: L e f t X > R i g h t X . T e s t e d w i t h TASM
: C n e a r - c a l l a b l e a s :

v o i d DrawHorizontalLineSeg(Y. L e f t X . R i g h t X . C o l o r) ;

SCREEN-WIDTH equ 320
SCREEN-SEGMENT equ OaODOh

Parms s t r u c

Y
dw 2 d u p (?)
dw ?

L e f t X dw ?
R igh tX dw ?
C o l o r dw ?
Parms ends

: r e t u r n a d d r e s s & pushed BP
: Y c o o r d i n a t e o f l i n e segment t o draw
; l e f t e n d p o i n t o f t h e l i n e segment
; r i g h t e n d p o i n t o f t h e l i n e segment
: c o l o r i n w h i c h t o d r a w t h e l i n e s e g m e n t

.model smal 1

.code
p u b l i c - D r a w H o r i z o n t a l L i n e S e g
a l i g n 2

p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p , s p : p o i n t t o o u r s t a c k f r a m e
p u s h d i ; p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e
c l d :make s t r i n g i n s t r u c t i o n s i n c p o i n t e r s
mov ax.SCREEN-SEGMENT
mov e s , a x ; p o i n t E S t o d i s p l a y memory
mov d i , [bp+Le f tX]
mov cx. [bp+RightX]
s u b c x . d i ; w i d t h o f l i n e
j l DrawDone :R igh tX < Le f tX : no d raw ing t o do
i n c c x : i n c l u d e b o t h e n d p o i n t s
mov ax.SCREEN-WIDTH
mu1 [b p + Y l ; o f f s e t o f s c a n l i n e o n w h i c h t o d r a w
add d i , a x : E S : D I p o i n t s t o s t a r t o f l i n e seg
mov a 1 , b y t e p t r C b p + C o l o r l ; c o l o r i n w h i c h t o d r a w
mov a h . a l : p u t c o l o r i n AH f o r STOSW
s h r c x . 1 :# o f w o r d s t o f i 11
r e p s t o s w :fill a word a t a t i m e
adc cx.cx
r e p s t o s b : d r a w t h e o d d b y t e , i f any

pop d i ; r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e
POP bp ; r e s t o r e c a l l e r ' s s t a c k f r a m e
r e t

end

~ D rawHor i zon ta l L ineSeg p roc

DrawDone:

-DrawHor izonta lL ineSeg endp

754 Chapter 40

The algorithm used to X-sort the AET is an interesting performance consideration.
Listing 40.1 uses a bubble sort, usually a poor choice for performance. However,
bubble sorts perform well when the data are already almost sorted, and because of
the X coherence of edges from one scan line to the next, that’s generally the case
with the AET. An insertion sort might be somewhat faster, depending on the state of
the AET when any particular sort occurs, but a bubble sort will generally do just fine.
An insertion sort that scans backward through the AET from the current edge rather
than forward from the start of the AET could be quite a bit faster, because edges
rarely move more than one or two positions through the AET. However, scanning
backward requires a doubly linked list, rather than the singly linked list used in List-
ing 40.1. I’ve chosen to use a singly linked list partly to minimize memory requirements
(double-linking requires an extra pointer field) and partly because supporting back
links would complicate the code a good bit. The main reason, though, is that the
potential rewards for the complications of back links and insertion sorting aren’t
great enough; profiling a variety of polygons reveals that less than ten percent of
total time is spent sorting the AET.

The potential 1 to 5 percent speedup gained by optimizing AET sorting j us t isn ’t p worth it in any but the most demanding application-a good example of the need
to keep an overall perspective when comparing the theoretical characteristics of
various approaches.

Nonconvex Polygons
Nonconvex polygons can be filled somewhat faster than complex polygons. Because
edges never cross or switch positions with other edges once they’re in the AET, the
AET for a nonconvex polygon needs to be sorted only when new edges are added. In
order for this to work, though, edges must be added to the AET in strict left-to-right
order. Complications arise when dealing with two edges that start at the same point,
because slopes must be compared to determine which edge is leftmost. This is cer-
tainly doable, but because of space limitations and limited performance returns, I
haven’t implemented this in Listing 40.1,

Details, Details
Every so often, a programming demon that I’d thought I’d forever laid to rest arises
to haunt me once again. A minor example of this-an imp, if you will-is the use of
“ = ” when I mean “ == ,” which I’ve done all too often in the past, and am sure I’ll do
again. That’s minor deviltry, though, compared to the considerably greater evils of
one of my personal scourges, of which I was recently reminded anew: too-close atten-
tion to detail. Not seeing the forest for the trees. Looking low when I should have
looked high. Missing the big picture, if you catch my drift.

Of Songs, Taxes, and the Simplicity of Complex Polygons 755

Thoreau said it best: “Our life is frittered away by detail SimpliQ, simplify” That
quote sprang to mind when I received a letter a while back from Anton Treuenfels of
Fridley, Minnesota, thanking me for clarifylng the principles of filling adjacent con-
vex polygons in my ongoing writings on graphics programming. (You’ll find this
material in the previous two chapters.) Anton then went on to describe his own
method for filling convex polygons.
Anton’s approach had its virtues and drawbacks, foremost among the virtues being a
simplicity Thoreau would have admired. For instance, in writing my polygon-filling
code, I had spent quite some time trying to figure out the best way to identify which
edge was the left edge and which the right, finally settling on comparing the slopes
of the edges if the top of the polygon wasn’t flat, and comparing the starting points
of the edges if the top was flat. Anton simplified this tremendously by not bothering
to figure out ahead of time which was the right edge of the polygon and which the
left, instead scanning out the two edges in whatever order he found them and letting
the low-level drawing code test, and if necessary swap, the endpoints of each hori-
zontal line of the fill, so that filling started at the leftmost edge. This is a little slower
than my approach (although the difference is almost surely negligible), but it also
makes quite a bit of code go away.
What that example, and others like it in Anton’s letter, did was kick my mind into a
mode that it hadn’t-but should have-been in when I wrote the code, a mode in
which I began to wonder, “How else can I simplify this code?”; what you might call
Occam’s Razor mode. You see, I created the convex polygondrawing code by first
writing pseudocode, then writing C code, and finally writing assembly code, and
once the pseudocode was finished, I stopped thinking about the interactions of the
various portions of the program.
In other words, I became so absorbed in individual details that I forgot to consider
the code as a whole. That was a mistake, and an embarrassing one for someone who
constantly preaches that programmers should look at their code from a variety of
perspectives; the next chapter shows just how much difference thinking about the
big picture can make. May my embarrassment be your enlightenment.
The point is not whether, in the final analysis, my code or Anton’s code is better;
both have their advantages. The point is that I was programming with half a deck
because I was so fixated on the details of a single type of implementation; I ended up
with relatively hard-to-write, complex code, and missed out on many potentially use-
ful optimizations by being so focused. It’s a big world out there, and there are many
subtle approaches to any problem, s o relax and keep the big picture in mind as you
implement your programs. Your code will likely be not only better, but also simpler.
And whenever you see me walking across hot coals in this book or elsewhere when
there’s an easier way to go, please, let me know!
Thanks, Anton.

756 Chapter 40

	previous:
	home:
	next:

