
chapter 43

bit-plane animation



\ i 
~F 
3 f 

A: 

nd Extremely  Fast Animation  Method for 

When it comes to cokputers, my first love is animation.  There’s  nothing  quite like 
creating a miniature reality  simply by rearranging 

at makes animation particularly interesting is that 
in human  time),  and without blinking and flicker- 
illusion of motion and solidity. Those constraints 
hics  challenge-and  also the most rewarding. 

3% 

ar industry pundits rag on  the PC when it comes to animation. 
Okay, I’ll grant you h a t  the PC isn’t a Silicon Graphics workstation and never will be, 
but  then  neither is anything else on  the market. The VGA offers good resolution and 
color, and while the hardware wasn’t designed for  animation,  that doesn’t mean we 
can’t put it to work in that capacity. One lesson that any good PC graphics or assem- 
bly programmer  learns quickly  is that it’s  what the PC’s hardware can do-not  what it 
was intended to do-that’s important. (By the way, if I were to pick one aspect of the 
PC to dump  on, it would be sound,  not  animation.  The PC’s sound circuity really  is 
lousy, and it’s hard to understand why that  should be, given that  a  cheap  sound 
chip-which  even the almost-forgotten PCj-had-would  have changed everything. I 
guess IBM figured “serious” computer users would be put off  by a  computer  that 
could make fun noises.) 

795 



Anyway,  my point is that  the PC’s animation capabilities are pretty good. There’s a 
trick, though: You can only push the VGA to  its animation limits by stretching your 
mind a bit  and using some unorthodox  approaches to animation.  In fact, stretching 
your mind is the key to producing  good code for any task on the PC-that’s the topic 
of the first part of this book. For  most  software,  however, it’s not fatal if your code 
isn’t  excellent-there’s slow but  functional software  all  over the place. When it comes 
to VGA animation,  though, you  won’t get to first base without a clever approach. 
So, what  clever approaches do I have in mind? All sorts. The resources of the VGA 
(or even  its  now-ancient predecessor, the EGA) are many and varied, and can be 
applied  and  combined in hundreds of  ways to produce effective animation. For  ex- 
ample,  refer back  to Chapter 23 for  an example of page flipping. Or look at  the July 
1986 issue of PC Tech Journal, which describes the basic  block-move animation tech- 
nique, or the August 1987 issue of PC Tech Journal, which  shows a software-sprite 
scheme built  around  the EGA’s vertical interrupt  and  the AND-OR image drawing 
technique. Or look  over the rest of this book, which contains dozens of tips and 
tricks that can be applied  to  animation,  including Mode  X-based techniques  starting 
in Chapter 47 that  are  the basis for many commercial games. 
This chapter  adds yet another  sort of animation  to  the list. We’re going to take  ad- 
vantage of the bit-plane architecture  and color palette of the VGA to develop an 
animation architecture  that can handle several overlapping images  with terrific speed 
and with  virtually perfect visual  quality. This technique  produces no overlap  effects 
or flicker and allows  us to use the fastest  possible method to  draw  images-the REP 
MOVS instruction.  It has  its limitations, but unlike Mode X and some other anima- 
tion techniques,  the  techniques I’ll  show  you in this chapter will also  work on the 
EGA,  which  may  be important in some applications. 
As with  any technique on the PC, there are tradeoffs  involved  with  bit-plane  animation. 
While bit-plane animation is extremely attractive as far as performance  and visual 
quality are  concerned,  it is somewhat limited. Bit-plane animation  supports only four 
colors plus the  background color at any one time, each image  must  consist of only 
one of the  four colors, and it’s preferable  that images of the same color not intersect. 
It doesn’t much matter if bit-plane animation isn’t perfect for all  applications, though. 
The real  point of  showing  you bit-plane animation is to bring  home  the reality that 
the VGA  is a complex adapter with  many resources, and  that you can do remarkable 
things if  you understand those resources and  come up with  creative ways to  put  them 
to  work at specific  tasks. 

Bit-Planes:  The Basics 
The underlying  principle of bit-plane  animation  is  extremely  simple. The VGA has four 
separate  bit planes in modes ODH,  OEH, 10H, and 12H. Plane 0 normally contains 
data  for  the blue component of pixel  color, plane 1 normally contains  green pixel 

796 Chapter 43 



data, plane 2 red pixel data, and plane 3 intensity  pixel  data-but  we’re going to mix 
that up a bit in a  moment, so we’ll  simply refer to them as planes 0, 1, 2, and 3 from 
now on. 
Each  bit plane can  be  written to independently. The contents of the  four bit planes 
are used to generate pixels,  with the four bits that control the color of each pixel 
coming from the four planes. However, the bits from the planes go through  a look- 
up stage on the way to becoming pixels-they’re used to look up a 6bit color from 
one of the sixteen palette registers.  Figure 43.1 shows how the bits from the four 
planes feed into  the palette registers to select the color of each pixel. (On the VGA 
specifically, the output of the palette registers  goes to the DAC for an additional 
look-up  stage, as described in Chapters 33 and 34 and also Chapter A on the com- 
panion CD-ROM.) 
Take a  good look at Figure 43.1. Any light bulbs going on over  your head yet?  If not, 
consider this. The general problem with VGA animation is that it’s complex and 

I Plane 1 

Plane O 

- 
w 

plxel l. bitper rom 
each plane 

Palette I 

- 
color data 
per  pixel 
to the 
screen  (or 
to  the DAC 
on a VGA) 

How 4 bits of video  data  become 6 bits of color. 
Figure 43.1 

Bit-Plane  Animation 797 



timeconsuming to manipulate images that  span  the  four planes (as most do),  and 
that it's hard to avoid interference  problems when  images intersect, since those im- 
ages share  the same bits in display  memory. Since the  four bit planes can be written 
to and  read  from  independently,  it  should  be  apparent  that if  we could  come up with 
a way to display  images from each  plane  independently of whatever  images are  stored 
in the  other planes, we would  have four sets of images that we could  manipulate very 
easily. There would  be no  interference effects  between  images in  different planes, 
because  images in  one plane wouldn't share bits  with  images in  another  plane. What's 
more, since all the bits for  a given image would reside in  a single plane, we could do 
away with the  cumbersome  programming of the VGA's complex hardware that is 
needed to manipulate images that  span  multiple planes. 
All in all, it would be  a  good  deal if  we could  store  each image in  a single plane, as 
shown in Figure 43.2. However, a  problem arises when images  in different  planes 
overlap, as  shown in Figure 43.3. The combined bits from  overlapping images gener- 
ate new colors, so the  overlapping  parts of the images don't look  like  they belong to 
either of the two images. What we really  want, of course, is for one of the images to 
appear to be  in front of the  other.  It would  be better yet if the rearward image  showed 
through any transparent (that is, background-colored)  parts of the forward image. 
Can we do  that? 
You bet. 

Plane 3 I. 
Plane 2 l o c ,  1 

Plane 1 

I I 

m 
Plane 0 t t Screen 

Storing  images in separate planes. 
Figure 43.2 

798 Chapter 43 



Stacking  the  Palette  Registers 
Suppose that instead of  viewing the  four bits per pixel coming out of  display  memory 
as selecting one of sixteen colors,we view those bits  as selecting one offourcolors. If 
the bit from  plane 0 is 1, that would select color 0 (say, red).  The bit  from  plane 1 
would select color 1 (say, green),  the bit from  plane 2 would select color 2 (say, 
blue),  and  the bit  from  plane 3 would select color 3 (say, white). Whenever more 
than 1 bit is I,  the 1 bit from  the lowest-numbered plane would determine  the color, 
and 1 bits from all other planes would be  ignored. Finally, the absence of any 1 bits at 
all  would select the  background color (say, black). 
That would  give  us four colors and  the background color. It would  also  give  us  nifty 
image precedence, with images in  plane 0 appearing to be in front of images from 
the  other planes, images in plane 1 appearing to be in front of images from planes 2 
and 3, and so on.  It would  even  give  us transparency, where rearward images would 
show through holes  within and  around the edges of  images in forward  planes.  Finally, 
and most importantly, it would meet all the criteria needed to allow us to store  each 
image in a single plane,  letting us manipulate  the images very quickly and with no 
reprogramming of the VGA's hardware other than  the few OUT instructions re- 
quired to select the plane we want to write to. 

Bit-Plane  Animation 799 



Which  leaves  only one question: How do we get this  magical pixel-precedence scheme 
to  work? As it  turns  out, all we need to do is reprogram  the  palette registers so that 
the 1 bit from the plane with the highest precedence  determines  the color. The 
palette RAM settings for the colors described above are summarized in Table  43.1. 
Remember that  the  4bit values  coming from display  memory select which palette 
register provides the actual pixel color. Given that, it’s  easy to see that  the rightmost 
1-bit of the  four bits coming  from display  memory in Table 43.1 selects the pixel 
color. If the bit from  plane 0 is 1, then  the  color is red,  no matter what the  other bits 
are, as  shown in Figure 43.4.  If the  bit  from  plane 0 is 0, then if the bit from  plane  1 
is 1 the color is green,  and so on for  planes 2 and 3. In  other words,  with the palette 

800 Chapter 43 



Bit from plane 3 

Bit from plane 2 

Bit from plane 1 

Bit from plane 0 

PRO 
PR 1 
PR2 
PR3 
PR4 
PR5 
PR6 
PR7 
PR8 
PR9 

PRlO 
PRl  1 
PR12 
PR13 
PR14 
P R l 5  

How pixel precedence works. 
Figure 43.4 

register settings we instantly have  exactly  what we want, which is an approach  that 
keeps images in one plane  from  interfering with images in other planes while pro- 
viding precedence  and transparency. 
Seems almost too easy, doesn’t it? Nonetheless, it works  beautifully,  as  we’ll see very 
shortly.  First, though,  I’d like  to point  out  that there’s nothing sacred about  plane 0 
having precedence. We could rearrange  the  palette register settings so that any plane 
had  the highest precedence, followed by the  other planes in any order. I’ve chosen 
to make plane 0 the highest precedence only because it seems simplest to think of 
plane 0 as appearing in front of plane 1 ,  which is in front of plane 2, which is in front 
of plane 3. 

Bit-Plane Animation in Action 
Without further  ado, Listing 43.1 shows bit-plane animation in action. Listing 43.1 
animates 13 rather large images (each 32 pixels on a  side) over a complex  back- 
ground  at  a  good clip men on aprimordial 8088-based PC. Five  of the images move  very 
quickly,  while the  other 8 bounce back and  forth  at  a steady pace. 

LISTING 43.1 L43- 1 .ASM 
: Program t o  d e m o n s t r a t e   b i t - p l a n e   a n i m a t i o n .   P e r f o r m s  
: f l i c k e r - f r e e   a n i m a t i o n   w i t h   i m a g e   t r a n s p a r e n c y   a n d  
: image  precedence  across f o u r  d i s t i n c t   p l a n e s ,   w i t h  
: 1 3  32x32 images  kept i n   m o t i o n   a t  once. 

Bit-Plane Animation 801 



; S e t   t o   h i g h e r   v a l u e s   t o   s l o w  down on fas te r   compu te rs .  
: 0 i s   f i n e   f o r  a PC.  500 i s  a r e a s o n a b l e   s e t t i n g   f o r  an AT. 
; S l o w i n g   a n i m a t i o n   f u r t h e r   a l l o w s  a good l o o k   a t  
; t r a n s p a r e n c y   a n d   t h e   l a c k   o f   f l i c k e r  and c o l o r   e f f e c t s  
; when images  cross. 

SLOWDOWN equ  10000 

; P l a n e   s e l e c t s   f o r   t h e   f o u r   c o l o r s   w e ' r e   u s i n g .  

RED equ  Olh 
GREEN equ  02h 
BLUE equ  04h 
WHITE equ  08h 

VGA-SEGMENT equ OaOOOh 

SC-INDEX equ  3c4h 

MAP-MASK equ 2 

SCREEN-WIDTH equ 80 
SCREEN-HEIGHT equ  350 
WORD-OUTS-OK equ 1 

:mode 1 0 h   d i s p l a y  memory 
; segment 
;Sequence C o n t r o l l e r   I n d e x  
; r e g i s t e r  
:Map Mask r e g i s t e r   i n d e x   i n  
; Sequence C o n t r o l l e r  
;# o f   b y t e s   a c r o s s   s c r e e n  
;# o f   s c a n   l i n e s  on  screen 
; s e t   t o  0 t o  assemble f o r  
; c o m p u t e r s   t h a t   c a n ' t  
; hand le   word   ou ts   t o  
; indexed VGA regs 

s t a c k  segment  para  stack 'STACK' 
db 512 dup (? )  

s t a c k  ends 

; Complete i n f o   a b o u t  one o b j e c t   t h a t   w e ' r e   a n i m a t i n g .  

O b j e c t S t r u c t u r e   s t r u c  
Delay dw 

BaseDel  ay dw 
Image dw 

XCoord dw 
XInc dw 

X L e f t L i m i t  dw 
X R i g h t L i m i t  dw 
YCoord dw 
Y I n c  dw 

YTopLimi t  dw 
YBot tomLimi t  dw 
P1 aneSel  ect   db 

db 

? 

? 
? 

? 
? 

? 
? 
? 
? 

? 
? 
? 

? 

;used t o   d e l a y   f o r  n passes 
; t h r o u g h t   t h e   l o o p   t o  
; cont ro l   an imat ion   speed 
; r e s e t   v a l u e   f o r   D e l a y  
; p o i n t e r   t o   d r a w i n g   i n f o  
: f o r   o b j e c t  
; o b j e c t  X l o c a t i o n   i n   p i x e l s  
;# o f   p i x e l s   t o   i n c r e m e n t  
: l o c a t i o n  by i n   t h e  X 
: d i r e c t i o n  on  each move 
; l e f t  limit o f  X mo t ion  
; r i g h t  limit o f  X mo t ion  
; o b j e c t  Y l o c a t i o n   i n   p i x e l s  
; i  o f  p i x e l s   t o   i n c r e m e n t  
; l o c a t i o n  by i n   t h e  Y 
: d i r e c t i o n  on  each move 
; t o p  limit o f  Y mo t ion  
;bot tom limit o f  Y mo t ion  
;mask t o   s e l e c t   p l a n e   t o  
; w h i c h   o b j e c t   i s   d r a w n  
; t o  make an  even # o f   w o r d s  
; l o n g ,   f o r   b e t t e r  286 
; per formance  (keeps  the 
; f o l l o w i n g   s t r u c t u r e  
; word -a l i gned)  

O b j e c t S t r u c t u r e  ends 

802 Chapter 43 



Data  segment word 'DATA'  

; P a l e t t e   s e t t i n g s   t o   g i v e   p l a n e  0 p recedence ,   fo l lowed  by 
; p l a n e s  1. 2 .  and  3 .   Plane  3  h a s  t h e   l o w e s t   p r e c e d e n c e  ( i s  
; obscured by a n y   o t h e r   p l a n e ) .   w h i l e   p l a n e  0 h a s   t h e  
; h i g h e s t   p r e c e d e n c e   ( d i s p l a y s  i n  f r o n t  of  any o t h e r   p l a n e ) .  

Co lo r s  db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

OOOh 
03ch 
03a h 
03ch 
039h 
03ch 
03a h 
03ch 
03f h 
03ch 
03a h 
03ch 
039h 
03ch 
03ah 
03ch 
O O O h  

:background  color-black 
; p l a n e  0 only-red 
: p l a n e  1 only-green 
;p l anes   O&l - red   (p l ane  0 p r i o r i t y )  
;plane  2   only-blue 
; p l a n e s  O&E-red ( p l a n e  0 p r i o r i t y )  
; p l anes   1&2-green   (p l ane  1 p r i o r i t y )  
; p l anes   O&l&E-red   (p l ane  0 p r i o r i t y )  
;p lane   3   on ly-whi te  
; p l a n e s  O&3-red ( p l a n e  0 p r i o r i t y )  
: p l anes   1&3-green   (p l ane  1 p r i o r i t y )  
; p l anes   O&l&3- red   (p l ane  0 p r i o r i t y )  
; p l a n e s   2 6 3 - b l u e   ( p l a n e   2   p r i o r i t y )  
; p l anes   0&2&3- red   (p l ane  0 p r i o r i t y )  
; p l anes   1&2&3-green   (p l ane  1 p r i o r i t y )  
;p lanes   0&1&2&3-red   (p lane  0 p r i o r i t y )  
;border   col   or-bl   ack 

; Image  of  a  hollow  square. 
; T h e r e ' s   a n   8 - p i x e l - w i d e   b l a n k   b o r d e r   a r o u n d   a l l   e d g e s  
; so t h a t   t h e   i m a g e   e r a s e s   t h e   o l d   v e r s i o n  of i t s e l f   a s  
; i t ' s  moved and  redrawn. 

Squa re   l abe l   by te  
dw 4 8 . 6   ; h e i g h t   i n   p i x e l s ,   w i d t h  i n  b y t e s  
r e p t  8 
db 0 . 0 , 0 . 0 , 0 . 0 ; t o p   b l a n k   b o r d e r  
endm 
. r a d i x  2 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

0.11111111.11111111,11111111,11111111,0 
0.11111111.11111111.11111111.11111111.0 
0.11111111,11111111,11111111,11111111,0 
0.11111111,11111111,11111111,11111111,0 
0,11111111.11111111.11111111.11111111.0 
0.11111111.11111111,11111111,11111111,0 
0.11111111.11111111.11111111.11111111.0 
0.11111111.11111111.11111111.11111111.0 
0.11111111.00000000.00000000,11111111,0 
0,11111111,00000000.00000000.11111111,0 
0.11111111.00000000.00000000.11111111.0 
0,11111111.00000000.00000000.11111111.0 
0.11111111.00000000,00000000,11111111,0 
0,11111111,00000000,00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0.11111111.00000000.00000000.11111111.0 
0,11111111,00000000,00000000.11111111.0 
0.11111111,00000000,00000000,11111111,0 
0,11111111.00000000.00000000,11111111,0 
0,11111111.00000000.00000000.11111111.0 
0.11111111,00000000.00000000,11111111,0 
0.11111111.00000000.00000000.11111111.0 
0,11111111.00000000.00000000,11111111,0 

Bit-Plane Animation 803 



db 0,11111111.11111111.11111111,11111111,0 
db 0.11111111.11111111,11111111,11111111,0 
db 0.11111111.11111111.11111111.11111111.0 
db 0.11111111,11111111.11111111,11111111,0 
db 0.11111111.11111111.11111111,11111111,0 
d b  0.11111111.11111111.11111111,11111111~0 
db 0,11111111.11111111.11111111.11111111.0 
db 0.11111111,11111111.11111111,11111111,0 
. r a d i x  10 
r e p t  8 
db  0 .0 .0 .0 .0 .0  ;bo t tom  b lank   border  
endm 

: Image  of a hol low  diamond  with a s m a l l e r   d i a m o n d   i n   t h e  
: middle .  
: T h e r e ' s   a n   8 - p i x e l - w i d e   b l a n k   b o r d e r   a r o u n d   a l l   e d g e s  
: so t h a t   t h e  i m a g e   e r a s e s   t h e   o l d   v e r s i o n  o f  i t s e l f   a s  
: i t ' s  moved and  redrawn. 

Diamond l a b e l   b y t e  
dw 48.6 : h e i g h t   i n   p i x e l s ,   w i d t h   i n   b y t e s  
r e p t  8 
d b  0.0,O.O.O.O ; t o p   b l a n k   b o r d e r  
endm 
. r a d i x  2 1 

db 
db  
db 
db  
db  
db  
db  
db  
db  
db  
db  
d b  
d b  
db  
db  
db  
db  
db  
db  
db  
db  
db  
d b  
d b  
db  
db  
db  
db  
db  
db  
db  
d b  

0.00000000.00000001.1000000.000000000.0 
0.00000000.00000011.11000000.00000000,0 
0.00000000.00000111.11100000.00000000.0 
0.00000000,00001111.11110000.00000000.0 
0.00000000.00011131.11111000.00000000.0 
0.00000000.00111110.01111100.00000000.0 
0.00000000.01111100.00111110,00000000.0 
0.00000000.11111000.00011111.00000000.0 
0.00000001,11110000.00001111,10000000.0 
0,00000011.11100000.00000111.11000000.0 
0.00000111.11000000.00000011,11100000.0 
0.00001111.10000001,10000001,11110000,0 
0.00011111.00000011.11000000*11111000.0 
0.00111110.00000111.11100000.01111100.0 
0,01111100.00001111.11110000.00111110.0 
0.11111000.00011111,11111000.00011111,0 
0.11111000.00011111.11111000.00011111.0 
0.01111100.00001111.11110000,00111110,0 
0.00111110,00000111.11100000,01111100.0 
0,00011111.00000011.11000000,11111000.0 
0,00001111,10000001.100000001.11110000.0 
0.00000111.11000000.00000011.11100000.0 
0,00000011.11100000.00000111.11000000.0 
0,00000001.11110000.00001111,10000000,0 
0.00000000.11111000.00011111,00000000*0 
0.00000000.01111100.00111110,00000000.0 
0.00000000.00111110.01111100.00000000.0 
0,00000000,00011111.11111000.00000000.0 
0.00000000.00001111.11110000.00000000.0 
0.00000000.00000111.11100000.00000000.0 
0.00000000.00000011.11000000.00000000.0 
0.00000000.00000001.1000000.000000000.0 

. r a d i x  10 
r e p t  8 
db  O,O.O,O.O.O;bot tom  blank  border  
endm 

804 Chapter 43 



: L i s t   o f   o b j e c t s   t o   a n i m a t e .  

e v e n   : w o r d - a l i g n   f o r   b e t t e r  286 per formance 

O b j e c t L i s t   l a b e l  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t S t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t S t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  
O b j e c t s t r u c t u r e  

O b j e c t L i s t E n d  

Data  ends 

O b j e c t s t r u c t u r e  
<1,21.Diamond,88.8.80,512,16,0,0,350,RED> 
<1.15.Square,296.8.112,480,144.0.0,350,REO> 
<1,23.Diamond.88,8.80,512,256.0,0.35O,RED> 
<1.13.Square.120,0.0.640,144.4,0,28O,~LUE> 
<1.11.0iamond.208.0.0,640.144.4,0,280,ElLUE> 
<1.8.Square.296.0.0.640,144.4.0,288,BLUE> 
<1.9.Diamond,384,0.0.640,144.4,0~288,BLUE> 
<I .14.Square.472.0.0.640,144.4.0.280.BLUE> 
<1.8.Diamond,200,8.0,576,48,6,0,28O~GREEN> 
<1.8.Square.Z48.8,0,576,96.6.0.280.GREEN> 
<1.8.Diamond,296.8.0.576,144,6,0,28O,GREEN> 
<1.8.Square.344,8.0.576,192,6,0.280,GREEN> 
<1,8,0iamond.392.8.0.576,240,6.0,280~GREEN> 
l a b e l   O b j e c t S t r u c t u r e  

: Macro t o   o u t p u t  a w o r d   v a l u e   t o  a p o r t .  

OUT-WORD macro 
i f  WORD-OUTS-OK 

out   dx.ax 
e l s e  

ou t   dx ,a l  
i n c  dx 
xchg  ah.al  
ou t   dx .a l  
dec  dx 
xchg  ah,al 

endm 
endi  f 

: Macro t o   o u t p u t  a c o n s t a n t   v a l u e   t o  an  indexed VGA 
: r e g i s t e r .  

CONSTANT-TO-INDEXED-REGISTERmacro ADDRESS,   INDEX,  VALUE 
mov  dx.AODRESS 
mov ax.(VALUE s h l  8) + I N D E X  
OUT-WORD 
endm 

Code segment 
assume  cs:Code.  ds:Data 

S t a r t   p r o c   n e a r  
c l d  
mov ax.Data 
mov ds.ax 

: Set   640x350  16-co lor  

mov ax.0010h 

i n t  10h 

mode. 

;AH-0 means s e l e c t  mode 
:AL-lOh means s e l e c t  
: mode 10h 
:BIOS v i d e o   i n t e r r u p t  

Bit-Plane  Animation 805 



: S e t   t h e   p a l e t t e   u p   t o   p r o v i d e   b i t - p l a n e   p r e c e d e n c e .  If 
: planes  0 L 1 o v e r l a p ,   t h e   p l a n e  D c o l o r  will be  shown; 
; i f  p lanes  1 & 2 o v e r l a p ,   t h e   p l a n e  1 c o l o r  will be 
: shown:  and s o  on. 

mov ax . ( lOh   sh l  8) + 2 :AH - 10h means 
: s e t   p a l e t t e  
: r e g i s t e r s   f n  
:AL - 2 means s e t  
: a l l   p a l e t t e  
: r e g i s t e r s  

push  ds :ES:DX p o i n t s   t o  

mov d x . o f f s e t   C o l o r s  : s e t t i n g s  
i n t  10h ; c a l l   t h e  BIOS t o  

: s e t   t h e   p a l e t t e  

POP es ; t h e   p a l e t t e  

: Draw t h e   s t a t i c   b a c k d r o p   i n   p l a n e  3 .  All the  moving  images 
: will appear t o  be i n  f r o n t   o f   t h i s   b a c k d r o p ,   s i n c e   p l a n e  3 
: has the   l owes t   p recedence   the  way t h e   p a l e t t e   i s   s e t  up. 

CONSTANT-TO-INDEXED-REGISTER SC-INDEX.  MAP-MASK. D8h 
: a l l o w   d a t a   t o  go t o  
: p l a n e  3 o n l y  

: P o i n t  ES t o   d i s p l a y  memory f o r   t h e   r e s t   o f   t h e   p r o g r a m .  

mov  ax.VGA-SEGMENT 
mov es.ax 

sub d i   . d i  
mov  bp.SCREEN-HEIGHT116 

BackdropBlockLoop: 
c a l l  DrawGri  dCross 
ca l l   D rawGr idVer t  

dec  bp 
jnz  BackdropBlockLoop 
c a l l  DrawGridCross 

: S t a r t   a n i m a t i n g !  

Animat ionLoop: 
mov b x . o f f s e t   O b j e c t L i s t  

:fill i n  t h e   s c r e e n  
: 1 6   l i n e s   a t  a t i m e  

:draw a c r o s s   p i e c e  
: d r a w   t h e   r e s t   o f  a 
: 1 5 - h i g h   b l o c k  

: b o t t o m   l i n e   o f   g r i d  

: p o i n t   t o   t h e   f i r s t  
: o b j e c t   i n   t h e   l i s t  

: For each  ob jec t ,   see  i f  i t ' s   t i m e   t o  move and  draw t h a t  
; o b j e c t .  

ObjectLoop: 

; See i f  i t ' s   t i m e   t o  move t h i s   o b j e c t .  

dec Cbx+Del ay]   :count  down d e l a y  
j n z   D o N e x t O b j e c t   ; s t i l l   d e l a y i n g - d o n ' t  move 
mov ax.Cbx+BaseDelay] 
mov [bx+De lay l   , ax   : rese t   de lay   f o r   nex t   t ime  

806 Chapter 43 



: S e l e c t   t h e   p l a n e   t h a t   t h i s   o b j e c t  will be  drawn in .  

mov dx,  SC-INDEX 
mov ah. [bx+PlaneSelect l  
mov a1 .MAP-MASK 
OUT-WORD 

; Advance t h e  X c o o r d i n a t e ,   r e v e r s i n g   d i r e c t i o n  i f  e i t h e r  
: o f   t h e  X margins  has  been  reached. 

mov cx.Cbx+XCoordl ; c u r r e n t  X l o c a t i o n  
cmp c x . [ b x + X L e f t L i m i t l   ; a t   l e f t   l i m i t ?  
j a   C h e c k X R i g h t L i m i t  
neg  Cbx+XIncl 

:no 
; yes - reve rse  

cmp cx . [bx+XRigh tL im i t l  ; a t  r i g h t  limit? 
j b  SetNewX ;no 
neg  [bx+XIncl  : yes - reve rse  

add  cx.Cbx+XIncl ;move t h e  X coord 
mov [bx+XCoordl.cx ; & save it 

CheckXRightL imi t :  

SetNewX: 

; Advance t h e  Y c o o r d i n a t e ,   r e v e r s i n g   d i r e c t i o n  i f  e i t h e r  
; o f   t h e  Y margins  has  been  reached. 

mov dx,[bx+YCoordl ; c u r r e n t  Y l o c a t i o n  
cmp d x . C b x + Y T o p L i m i t l : a t   t o p   l i m i t ?  
j a  CheckYBottomLimit  ;no 
neg  Cbx+YIncl   ;yes-reverse 

CheckYBottomLimit:  
cmp dx. [bx+YBottomLimit ]   ;at   bot tom limit? 
j b  SetNewY 
neg  Cbx+YIncl 

add  dx.Cbx+YIncl ;move t h e  Y coo rd  
mov [bx+YCoordl.dx ; & save it 

;no 
; yes - reve rse  

SetNewY: 

: Draw a t   t h e  new 1 o c a t i o n .  Because o f   t h e   p l a n e   s e l e c t  
; above, o n l y  one p l a n e  will b e   a f f e c t e d .  

mov s i .Cbx+ Image l   ; po in t   t o   t he  
; o b j e c t ' s  image 
; i n f o  

c a l l   D r a w o b j e c t  

; P o i n t   t o   t h e   n e x t   o b j e c t   i n   t h e   l i s t   u n t i l  we r u n   o u t   o f  
; o b j e c t s .  

DoNextObject: 
add   bx .s i ze   Ob jec tS t ruc tu re  
cmD b x . o f f s e t   O b j e c t L i s t E n d  
j b  ObjectLoop 

; D e l a y   a s   s p e c i f i e d   t o  

i f  SLOWDOWN 
mov cx ,  SLOWDOWN 

1 oop  Del  ayLoop 
Del  ayLoop: 

end i  f 

s low   th ings  down 

Bit-Plane  Animation 807 



: If a key 's   been  pressed,   we ' re   done,   o therwise  an imate 
; again.  

CheckKey: 
mov ah.1 
i n t  16h 
jz AnimationLoop 
sub  ah.ah 
i n t  16h 

: Back t o   t e x t  mode. 

mov ax.0003h 

i n t  10h 

: Back t o  DOS. 

mov ah.4ch 
i n t  21h 

S t a r t  endp 

: i s  a key   wa i t i ng?  
:no 

: y e s - c l e a r   t h e   k e y  & done 

:AL-O3h means s e l e c t  
: mode 03h 

;DOS t e r m i n a t e   f u n c t i o n  
:done 

Draws a s i n g l e   g r i d   c r o s s - e l e m e n t   a t   t h e   d i s p l a y  memory 
l o c a t i o n   p o i n t e d   t o   b y  E S : D I .  1 h o r i z o n t a l   l i n e   i s  drawn 
ac ross   t he   sc reen .  

I n p u t :  ES:DI p o i n t s   t o   t h e   a d d r e s s  a t  w h i c h   t o   d r a w  

Output :  ES:DI p o i n t s   t o   t h e   a d d r e s s   f o l l o w i n g   t h e  
l i n e  drawn 

R e g i s t e r s   a l t e r e d :  AX,  C X ,  DI 

DrawGridCross  proc  near 
mov a x . 0 f f f f h   : d r a w  a s o l i d   l i n e  
mov cx.SCREEN-WIDTH12-1 
rep  stosw  ;draw a l l   b u t   t h e   r i g h t m o s t  

mov ax,  0080h 
: edge 

s tosw  :d raw  the   r i gh t   edge   o f   t he  

r e t  
: g r i d  

DrawGridCross  endp 

Draws t h e   n o n - c r o s s   p a r t   o f   t h e   g r i d   a t   t h e   d i s p l a y  memory 
l o c a t i o n   p o i n t e d   t o   b y  ES:DI .  15  scan l i n e s   a r e   f i l l e d .  

I n p u t :  ES:D I  p o i n t s   t o   t h e   a d d r e s s   a t   w h i c h   t o   d r a w  

Output :  ES:DI  p o i n t s   t o   t h e   a d d r e s s   f o l l o w i n g   t h e  
p a r t   o f   t h e   g r i d  drawn 

R e g i s t e r s   a l t e r e d :  AX,  C X .  DX. D I  

OrawGridVert   proc  near 
mov ax,  0080h : p a t t e r n   f o r  a v e r t i c a l   l i n e  
mov dx.15 :draw  15  scan l i n e s   ( a l l  o f  

: a g r i d   b l o c k   e x c e p t   t h e  
: s o l i d   c r o s s   l i n e )  

808 Chapter 43 



BackdropRowLoop: 
mov cx.SCREEN_WIDTH/Z 
rep  s tosw ;draw t h i s  scan l i n e ' s   b i t  

; o f   a l l   t h e   v e r t i c a l   l i n e s  
; on the   sc reen  

dec  dx 
j n z  BackdropRowLoop 
r e t  

DrawGridVert  endp 

; D r a w  t h e   s p e c i f i e d  image a t   t h e   s p e c i f i e d   l o c a t i o n .  
; Images a re   d rawn   on   by te   boundar ies   ho r i zon ta l l y ,   p i xe l  
; b o u n d a r i e s   v e r t i c a l l y .  
; The Map Mask reg i s te r   mus t   a l ready   have  been s e t   t o   e n a b l e  
; access t o   t h e   d e s i r e d   p l a n e .  

; I n p u t :  
; C X  - X c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r  
; DX - Y c o o r d i n a t e   o f   u p p e r   l e f t   c o r n e r  
; DS:SI - p o i n t e r   t o  draw i n f o   f o r  image 
; ES - d i s p l a y  memory segment 

; Output:  none 

; R e g i s t e r s   a l t e r e d :  A X ,  C X .  D X .  S I .  D I .  BP 

Drawob jec t   p roc   near  
mov  ax.SCREEN-WIDTH 
mu1 dx ; c a l c u l a t e   t h e   s t a r t   o f f s e t   i n  

; d i s p l a y  memory o f   t h e   r o w   t h e  
; image will be  drawn a t  

sh r  cx .1  
s h r  cx .1  
sh r  cx .1  

add ax.cx 

mov d i  ,ax 

1 odsw 
mov dx.ax 
1 odsw 
mov  bp.SCREENKWIDTH 
sub  bp,ax 

DrawLoop: 
mov cx.ax 
rep  movsb 

add  di ,bp 

dec  dx 
j n z  DrawLoop 
r e t  

; d i v i d e   t h e  X c o o r d i n a t e   i n   p i x e l s  
; by 8 t o   g e t   t h e  X c o o r d i n a t e   i n  
; by tes  
; d e s t i n a t i o n   o f f s e t   i n   d i s p l a y  
; memory f o r   t h e  image 
; p o i n t  E S : D I  t o   t h e   a d d r e s s   t o  
; which  the  image will be  copied 
; i n   d i s p l a y  memory 

;# o f   l i n e s   i n   t h e  image 
;# of   by tes   across   the   image 

;# o f   b y t e s   t o  add t o   t h e   d i s p l a y  
; memory o f f s e t   a f t e r   c o p y i n g  a l i n e  
; o f   t h e  image t o   d i s p l a y  memory i n  
: o r d e r   t o   p o i n t   t o   t h e   a d d r e s s  
; where t h e   n e x t   l i n e   o f   t h e  image 
; will go i n   d i s p l a y  memory 

; w i d t h   o f   t h e  image 
; c o p y   t h e   n e x t   l i n e   o f   t h e  image 
; i n t o   d i s p l a y  memory 
; p o i n t   t o   t h e   a d d r e s s  a t  wh ich   t he  
; n e x t   l i n e  will go i n   d i s p l a y  
; memory 
;count  down t h e   l i n e s   o f   t h e  image 

Bit-Plane  Animation 809 



Drawobject  endp 

Code  ends 
end S t a r t  

For those of  you  who haven’t experienced  the  frustrations of animation  program- 
ming on  a PC, there’s  a wholelot  of animation  going  on  in Listing  43.1.  What’s more, 
the  animation is  virtually flicker-free, partly thanks  to bit-plane animation and partly 
because  images are never  really  erased but  rather are simply  overwritten. (The principle 
behind  the  animation is that of redrawing each image with a blank fringe  around  it 
when it moves, so that  the  blank  fringe erases the  part of the  old image that  the new 
image  doesn’t  overwrite.  For  details on this sort of animation, see the above-mentioned 
PC TechJournaZJuly 1986 article.) Better yet, the  red images  take precedence over the 
green images,  which  take precedence over the  blue images,  which take precedence 
over the white backdrop,  and all obscured images  show through  holes  in  and  around 
the edges of images  in front of them. 
In  short, Listing  43.1 accomplishes everything we wished for  earlier  in  an  animation 
technique. 
If  you  possibly can, run Listing  43.1. The animation may  be a revelation to those  of  you 
who are  used  to weak,  slow animation  on PCs with  EGA or VGA adapters. Bit-plane 
animation makes the PC look an awful lot like-dare I say  it?-a games machine. 
Listing  43.1 was designed to run  at  the absolute fastest speed,  and as I mentioned  it 
puts in a pretty amazing performance  on  the slowest PCs of  all.  Assuming  you’ll  be 
running Listing  43.1 on  an faster computer, you’ll  have to crank up the DELAY equate 
at  the start of Listing  43.1 to slow things down to a  reasonable  pace. (It’s not a very 
good  game where all the pieces are  a  continual  blur!) Even on  something as modest 
as a 286based AT, Listing 43.1 runs much  too  fast  without a substantial  delay (although 
it  does look rather  interesting  at warp speed). We should all  have such problems, eh? 
In fact, we could easily increase  the  number of animated images past 20 on  that old 
AT, and well into  the  hundreds  on a cuttingedge local-bus  486 or Pentium. 
I’m  not  going to  discuss  Listing  43.1  in detail;  the  code is  very thoroughly com- 
mented  and  should speak for itself, and most of the individual components of Listing 
43.1-the  Map  Mask register, mode sets,  word  versus  byte OUT instructions to the 
VGA-have been covered in earlier  chapters. Do notice, however, that Listing  43.1 
sets the  palette exactly  as I described earlier. This is accomplished by passing a  pointer 
to a 1’7-byte array (1 byte for  each of the  16  palette registers, and 1 byte for  the 
border  color) to the BIOS  video interrupt (INT lOH),  function 10H, subfunction 2. 
Bit-plane animation  does have inherent limitations, which  we’ll get  to  in  a  second. 
One  limitation  that is not inherent to bit-plane animation  but simply a  shortcoming 
of  Listing  43.1 is somewhat choppy horizontal  motion.  In  the  interests of both clarity 
and  keeping Listing  43.1 to a  reasonable  length, I decided to byte-align  all  images 
horizontally. This saved the many  tables needed to define the 7 non-byte-aligned 

8 1 0 Chapter 43 



rotations of the images, as well as the  code  needed to support  rotation. Unfortu- 
nately, it also meant  that  the smallest possible horizontal movement was 8 pixels (1 
byte  of  display memory), which is far  enough to be noticeable at certain speeds. The 
situation is,  however,  easily correctable with the additional  rotations and code. We’ll 
see an  implementation of  fully rotated images (in this case for Mode X, but  the 
principles generalize nicely) in  Chapter 49. Vertically, where there is no byte-align- 
ment issue, the images  move 4 or 6 pixels at a times, resulting in considerably smoother 
animation. 
The addition of code to support  rotated images would  also open  the  door to support 
for internal  animation, where the  appearance of a given image changes over time to 
suggest that  the image is an active  entity. For example,  propellers  could whirl, jaws 
could  snap, and  jets could flare. Bit-plane animation with bit-aligned images and 
internal  animation can look truly spectacular. It’s a sight worth seeing, particularly 
for those who doubt  the PC’s worth when it comes  to animation. 

Limitations of Bit-Plane Animation 
As I’ve said, bit-plane animation is not perfect. For starters, bit-plane animation can 
only be used in the VGAs planar  modes,  modes ODH, OEH, IOH, and 12H. Also, the 
reprogramming of the palette registers that provides image precedence also reduces 
the available color set from  the  normal 16 colors to just 5 (one color per plane plus 
the  background color). Worse still, each image must consist entirely of only one of 
the  four colors. Mixing colors within an image is not allowed, since the bits for each 
image are limited to a single plane and can therefore select only one color.  Finally, 
all images of the same precedence must be the same  color. 
It is  possible to work around  the color limitations to  some extent by using only one 
or two planes for bit-plane animation, while reserving the  other planes  for multi- 
color drawing. For example, you could use plane 3 for bit-plane animation while 
using planes 0-2 for  normal 8-color drawing. The images in  plane 3 would then ap- 
pear to be in front of the 8-color images. If  we wanted the  plane 3 images to be 
yellow,  we could set up  the palette registers as  shown in Table 43.2. 
As you can see, the color yellow is displayed whenever a pixel’s bit  from  plane 3 is 1. 
This gives the images from  plane 3 precedence, while  leaving  us  with the 8 normal 
low-intensity colors for images drawn across the  other 3 planes, as  shown in Figure 
43.5. Of course, this approach provides only 1 rather  than 3 high-precedence planes, 
but  that  might be a good tradeoff for  being able to draw multi-colored images as a 
backdrop to the high-precedence images.  For the right application, high-speed  flicker- 
free  plane 3 images moving in front of an 8-color backdrop  could be a potent 
combination  indeed. 
Another limitation of bit-plane animation is that it’s best if images stored  in  the same 
plane never cross each other. Why?  Because  when images do cross, the blank fringe 

Bit-Plane  Animation 8 1 1 



around each image can temporarily erase the overlapped parts of the  other image or 
images, resulting in momentary flicker.  While that’s not fatal, it certainly detracts 
from the rock-solid animation effect of bit-plane animation. 
Not allowing images in the same plane to overlap is  actually  less  of a limitation than 
it seems. Run  Listing 43.1 again. Unless you  were looking for  it, you’d never notice 
that images of the same color almost never overlap-there’s plenty of action to dis- 
tract the eye, and  the trajectories of images of the same color are  arranged so that 
they have a full range of motion without running  into  each other. The only excep- 
tion is the chain of green images, which  occasionally doubles back on itself  when it 
bounces directly into a  corner  and reverses direction.  Here, however, the images are 
moving so quickly that  the brief moment  during which one image’s fringe blanks a 

8 1 2 Chapter 43 



Bit  from  plane 3 

Bit  from plane 2 

Bit  from  plane 1 

Bit from  plane 0 

t 
&bit palette  register #, which 
selects 1 of 1 6  palette  registers. 
The  selection is  always 1 of the 8 
normal  low-intensi  colors  when 
the bit from  plane !is 0. 

PRO 
PR 1 
PR2 
PR3 
PR4 
PR5 
PR6 
PR7 
PR8 
PR9 

PR10 
PRl  1 
PR12 
PR13 
PR14 
PR15 

8 normal 
low-intensity 
colors 

Pixel  precedence for plane 3 only. 
Figure 43.5 

portion of another image is noticeable only upon close inspection,  and not particu- 
larly unaesthetic even then. 
When a  technique has such tremendous visual and  performance advantages as does 
bit-plane animation, it behooves you to design your animation software so that  the 
limitations of the  animation  technique  don’t get in  the way. For example, you might 
design a  shooting gallery  game  with  all the images in  a given plane  marching  along 
in step  in  a  continuous  band.  The images could never overlap, so bit-plane anima- 
tion  would produce very high image quality. 

Shearing  and  Page  Flipping 
As Listing 43.1 runs, you  may occasionally see an image shear, with the top and bot- 
tom parts of the image briefly offset. This is a  consequence of drawing an image 
directly into memory  as that memory is being  scanned for video data. Occasionally 
the CRT controller scans a given area of  display  memory for pixel data just as the 
program is changing  that same  memory. If the CRT controller scans  memory faster 
than  the CPU can modi+ that memory, then  the CRT controller can scan out  the 
bytes of display  memory that have been already been  changed, pass the  point  in  the 
image that  the CPU is currently drawing, and start scanning  out bytes that haven’t 
yet been  changed. The result: Mismatched upper  and lower portions of the image. 
If the CRT controller scans more slowly than  the CPU can modify memory  (likely 
with a 386, a fast VGA, and narrow images),  then  the CPU can rip  right past the CRT 

Bit-Plane Animation 8 1 3 



controller, with the same net result of mismatched top  and  bottom  parts of the im- 
age, as the CRT controller scans out first unchanged bytes and  then  changed bytes. 
Basically, shear will occasionally occur unless the CPU and CRT proceed  at exactly 
the same rate, which is most  unlikely. Shear is more  noticeable when there  are fewer 
but  larger images, since it’s more  apparent when a  larger  screen  area is sheared,  and 
because it’s easier to  spot one  out of three  large images momentarily shearing  than 
one  out of twenty  small  images. 
Image shear isn’t  terrible-I’ve written and sold  several games in which  images  occa- 
sionally shear, and I’ve never heard  anyone complain-but neither is it  ideal. One 
solution is page flipping,  in which drawing is done to  a  nondisplayed page of display 
memory while another page of  display memory is  shown on  the  screen. (We  saw 
page flipping back in  Chapter 23, we’ll see it again in  the  next  chapter,  and we’ll use 
it heavily starting  in  Chapter 4’7.) When the drawing is finished,  the newlydrawn 
part of display memory is made  the displayed page, so that  the new screen becomes 
visible  all at once, with no shearing or flicker. The  other page is then drawn to,  and 
when the drawing is complete  the display  is  switched  back to that page. 
Page flipping can be  used in  conjunction with bit-plane animation,  although page 
flipping  does  diminish some of the  unique advantages of bit-plane animation. Page 
flipping  produces  animation of the  highest visual quality whether bit-plane anima- 
tion is used or  not.  There  are a few drawbacks to page flipping, however. 
Page flipping  requires two display memory buffers, one to draw in  and  one to display 
at any  given time. Unfortunately, in mode 12H there  just isn’t enough memory for 
two buffers, so page flipping is not  an  option in that  mode. 
Also, page flipping  requires  that you keep the contents of both buffers up to date, 
which can  require  a  good  deal of extra drawing. 
Finally, page flipping  requires  that you  wait until  you’re  sure  the page has flipped 
before you start drawing to the  other page. Otherwise, you could end  up modifying 
a page while  it’s  still being displayed, defeating  the whole purpose of page flipping. 
Waiting for pages to flip takes  time and can slow overall performance significantly. 
What’s more, it’s sometimes difficult to be sure when the page has flipped, since not 
all VGA clones implement the display adapter status  bits and page  flip  timing  identically. 
To sum up, bit-plane animation by itself is very fast and looks good.  In  conjunction 
with page flipping, bit-plane animation looks a little better  but is  slower, and  the 
overall animation  scheme is more difficult to implement  and  perhaps  a  bit less reli- 
able  on some computers. 

Beating  the Odds in the  Jaw-Dropping  Contest 
Bit-plane animation is neat stuff. Heck, good  animation of any sort is fun,  and  the PC 
is  as good  a place as any  (well, almost any) to make  people’s  jaws drop. (Certainly it’s 

8 14 Chapter 43 



the place to go if  you want to make a lot of  jaws drop.) Don’t let anyone tell  you that 
you can’t do good animation on the PC. You can--ifyou stretch your mind  to find 
ways to bring the full  power  of the VGA to bear on your applications. Bit-plane  ani- 
mation isn’t for every task; neither  are page flipping, exclusive-ORing,  pixel panning, 
or any  of the many other animation techniques you  have  available. One  or  more 
tricks from that grab-bag should give  you  what  you need,  though, and the bigger 
your  grab-bag, the  better your programs. 

Bit-Plane  Animation 8 1 5 


	previous: 
	home: 
	next: 


