
chapter 55

color modeling in 256-color mode

's Color Model in an

Once she turned six, my daughter wanted some fairly sophisticated books read to
her. Wind in the Willows use on the Prairie. Pretty heady stuff for one so young,
and sometimes I wondered how much of it she really understood. As an experiment,
during one reading)! stopped whenever I came to a word I thought she might not
know, and asked her what it meant. One such word was “mulling.”

ulling’ means?” I asked.
r a while, then said, “Pondering.”
e than a little surprised.

She smiled and said, “But, Dad, how do you know that I know what ‘pondering’ means?”
“Okay,” I said, ‘What does ‘pondering’ mean?”
“Mulling,” she said.
What does this anecdote tell us about the universe in which we live? Well, it certainly
indicates that this universe is inhabited by at least one comedian and one good straight
man. Beyond that, though, it can be construed as a parable about the difficulty of
defining things properly; for example, consider the complications inherent in the
definition of color on a 256-color display adapter such as the VGA. Coincidentally,
VGA color modeling just happens to be this chapter’s topic, and the place to start is
with color modeling in general.

1033

A Color Model
We’ve been developing X-Sharp for several chapters now. In the previous chapter,
we added illumination sources and shading; that addition makes it necessary for us
to have a general-purpose color model, so that we can display the gradations of color
intensity necessary to render illuminated surfaces properly. In other words, when a
bright light is shining straight at a green surface, we need to be able to display bright
green, and as that light dims or tilts to strike the surface at a shallower angle, we
need to be able to display progressively dimmer shades of green.
The first thing to do is to select a color model in which to perform our shading
calculations. I’ll use the dot product-based stuff I discussed in the previous chapter.
The approach we’ll take is to select an ideal representation of the full color space
and do our calculations there, as if we really could display every possible color; only
as a final step will we map each desired color into the limited 25kolor set of the VGA, or
the color range of whatever adapter we happen to be working with. There are a number
of color models that we might choose to work with, but I’m going to go with the one
that’s both most familiar and, in my opinion, simplest: RGB (red, green, blue).
In the RGB model, a given color is modeled as the mix of specific fractions of full
intensities of each of the three color primaries. For example, the brightest possible
pure blue is O.O*R, O.O*G, l.O*B. Half-bright cyan is O.O*R, 0.5*G, 0.5*B. Quarter-
bright gray is 0.25*R, 0.25*G, 0.25”B. You can think of RGB color space as being a
cube, as shown in Figure 55.1, with any particular color lying somewhere inside or
on the cube.

Red

Increasing /
red intensity

I Yellow

Cyan

Green

\
Increasing
green intensity

The RGB color cube.
Figure 55.1

1034 Chapter 55

RGB is good for modeling colors generated by light sources, because red, green, and
blue are the additive primaries; that is, all other colors can be generated by mixing
red, green, and blue light sources. They're also the primaries for color computer
displays, and the RGB model maps beautifully onto the display capabilities of 15-
and 24bpp display adapters, which tend to represent pixels as RGB combinations in
display memory.
How, then, are RGB colors represented in X-Sharp? Each color is represented as an
RGB triplet, with eight bits each of red, green, and blue resolution, using the struc-
ture shown in Listing 55.1.

LISTING 55.1 155- 1 .C
t y p e d e f s t r u c t " o d e l C o l o r [

uns igned cha r Red: / * 255 = rnax r e d , 0 = n o r e d * I
uns igned char Green: / * 255 = rnax g reen , 0 = no g reen */
u n s i g n e d c h a r B l u e : / * 255 = rnax b l u e . 0 = n o b l u e * I

I Model Co l o r :

Here, each color is described by three color components-one each for red, green,
and blue-and each primary color component is represented by eight bits. Zero
intensity of a color component is represented by the value 0, and full intensity is
represented by the value 255. This gives us 256 levels of each primary color compo-
nent, and a total of 16,772,216 possible colors.
Holy cow! Isn't 16,OOO,OOO-plus colors a bit of overkill?
Actually, no, it isn't. At the eighth Annual Computer Graphics Show in New York,
Sheldon Linker, of Linker Systems, related an interesting tale about color percep-
tion research at the Jet Propulsion Lab back in the '70s. The JPL color research folks
had the capability to print more than 50,000,000 distinct and very precise colors on
paper. As a test, they tried printing out words in various colors, with each word printed
on a background that differed by only one color index from the word's color. No
one expected the human eye to be able to differentiate between two colors, out of
5O,OOO,OOO-plus, that were so similar. It turned out, though, that everyone could read
the words with no trouble at all; the human eye is surprisingly sensitive to color
gradations, and also happens to be wonderful at detecting edges.
When the JPL team went to test the eye's sensitivity to color on the screen, they
found that only about 16,000,000 colors could be distinguished, because the color-
sensing mechanism of the human eye is more compatible with reflective sources
such as paper and ink than with emissive sources such as CRTs. Still, the human eye
can distinguish about 16,000,000 colors on the screen. That's not so hard to believe,
if you think about it; the eye senses each primary color separately, so we're really only
talking about detecting 256 levels of intensity per primary here. It's the brain that
does the amazing part; the 16,OOO,OOO-plus color capability actually comes not from
extraordinary sensitivity in the eye, but rather from the brain's ability to distinguish
between all the mixes of 256 levels of each of three primaries.

Color Modeling in 256-Color Mode 1035

So it's perfectly reasonable to maintain 24 bits of color resolution, and X-Sharp rep-
resents colors internally as ideal, device-independent 24bit RGB triplets. All shading
calculations are performed on these triplets, with 24bit color precision. It's only
after the final 24bit RGB drawing color is calculated that the display adapter's color
capabilities come into play, as the X-Sharp function ModelColorToColorIndex() is
called to map the desired RGB color to the closest match the adapter is capable of
displaying. Of course, that mapping is adapter-dependent. On a 24bpp device, it's
pretty obvious how the internal RGB color format maps to displayed pixel colors:
directly. On VGAs with 15-bpp Sierra Hicolor DACS, the mapping is equally simple,
with the five upper bits of each color component mapping straight to display pixels.
But how on earth do we map those 16,OOO,OOO-plus RGB colors into the 256-color
space of a standard VGA?
This is the "color definition" problem I mentioned at the start of this chapter. The
VGA palette is arbitrarily programmable to any set of 256 colors, with each color
defined by six bits each of red, green, and blue intensity. In X-Sharp, the function
InitializePaletteO can be customized to set up the palette however we wish; this gives
us nearly complete flexibility in defining the working color set. Even with infinite
flexibility, however, 256 out of 16,000,000 or so possible colors is a pretty puny selec-
tion. It's easy to set up the palette to give yourself a good selection of just blue
intensities, or ofjust greens; but for general color modeling there's simply not enough
palette to go around.
One way to deal with the limited simultaneous color capabilities of the VGA is to
build an application that uses only a subset of RGB space, then bias the VGA's palette
toward that subspace. This is the approach used in the DEMOl sample program in
X-Sharp; Listings 55.2 and 55.3 show the versions of Initializepalette0 and
ModelColorToColorIndex() that set up and perform the color mapping for DEMOl.

LISTING 55.2 155-2.C
/* S e t s u p t h e p a l e t t e i n mode X , t o a 2 - 2 - 2 g e n e r a l R - G - B o r g a n i z a t i o n , w i t h

64 s e p a r a t e l e v e l s e a c h o f p u r e r e d , g r e e n , a n d b l u e . T h i s i s v e r y g o o d
f o r p u r e c o l o r s , b u t m e d i o c r e a t b e s t f o r m i x e s .

....."""""""""~

10 0 I Red lGreen l B lue I

7 6 5 4 3 2 1 0
""""""""""""

""""""""""""

10 1 I Red I
""""""""""""

7 6 5 4 3 2 1 0

""""""""""""

11 0 I Green I

7 6 5 4 3 2 1 0

"""""""..........

1036 Chapter 55

_______"_."...........

I1 1 I B1 ue I
"""""""""""..

7 6 5 4 3 2 1 0

Colors are gamma corrected for a gamma of 2.3 to provide approximately
even intensity steps on the screen.

P i ncl ude <dos . h>
#include "polygon. h"

static unsigned char Gamma4Levels[l - { 0. 39. 53, 63 I ;
static unsigned char Gamma64Levels[] - {

0 . 10. 14. 17. 19. 21. 23. 24. 26, 27. 28. 29, 31. 32. 33. 34.
35. 36, 37. 37. 38. 39, 40. 41. 41. 42, 43, 44. 44, 45. 46. 46,
47. 48, 48. 49. 49. 50. 51. 51. 52, 52, 53, 53, 54. 54. 55. 55.
56. 56. 57. 57. 58, 58. 59. 59. 60, 60, 61. 61. 62, 62. 63. 63.

I ;

static unsigned char PaletteBlock[256][31: I* 256 RGB entries *I

void InitializePaletteO
I

int Red, Green, Blue. Index:
union REGS regset:
struct SREGS sregset:

for (Red-0: Red<4: Red++) {
for (Green-0: Green<4: Green++) I

for (Blue-0: Blue<4: Blue++) {
Index = (Red<<4)+(Green<<Z)+Blue:
PaletteBlock[Indexl[01 - Gamma4Levels[Redl:
PaletteBlock[Index][l] - Gamma4Levels[Greenl:
PaletteBlock[Indexl[21 - Gamma4Levels[Bluel:

1
I

I

for (Red-0: Red<64: Red++) {
PaletteBlock[64+Redl[Ol = Gamma64Levels[Redl;
PaletteBlock[64+Redl[ll - 0:
PaletteBlock[64+Redl[2] - 0:

1

for (Green-0: Green<64: Green++) {
PaletteBlock[128+Greenl[Ol - 0:
PaletteBlock[l28+Greenl[ll - Gamma64Levels[Greenl:
PaletteBlock[l2B+Green1[2] - 0:

1

for (Blue-0: Blue<64: Blue++) {
PaletteBlock[192+Bluel[Ol - 0:
PaletteBlock[192+Bluel[ll - 0:
Palette61 ock[192+B1 uelC21 - Gamma64Level sCBl uel :

1

I* Now set up the palette * /
re9set.x.a~ - 0x1012: I* set block of DAC registers function *I
regset.x.bx - 0; I* first DAC location to load *I

Color Modeling in 256-Color Mode 1037

r e g s e t . x . c x - 256: I* I o f DAC l o c a t i o n s t o 1 oad *I
r e g s e t . x . d x - (u n s i g n e d i n t) P a l e t t e B l o c k ; I* o f f s e t o f a r r a y f r o m w h i c h

t o l o a d RGB s e t t i n g s *I
s r e g s e t . e s - -DS; I* segment o f a r r a y f r o m w h i c h t o l o a d s e t t i n g s *I
i n t 8 6 x (O x l O . & r e g s e t . & r e g s e t . & r e g s e t) ; I* l o a d t h e p a l e t t e b l o c k *I

1

LISTING 55.3 155-3.C
/* C o n v e r t s a m o d e l c o l o r (a c o l o r i n t h e RGB c o l o r c u b e , i n t h e c u r r e n t

c o l o r m o d e l) t o a c o l o r i n d e x f o r mode X . P u r e p r i m a r y c o l o r s a r e
s p e c i a l - c a s e d , a n d e v e r y t h i n g e l s e i s h a n d l e d b y a 2 - 2 - 2 mode l . *I

i n t Model Col orToCol or Index(Mode1 Col or * C o l o r)
I

i f (C o l o r - > R e d - 0) {
i f (C o l o r - > G r e e n - 0) {

/ * P u r e b l u e *I
r e t u r n (l 9 2 + (C o l o r - > B l u e >> 2)) ;

I* Pure green *I
return(l28+(Color->Green >> 2)) ;

1 e l s e i f (C o l o r - > B l u e - 0) {

1

/* P u r e r e d *I
r e t u r n (6 4 + (C o l o r - > R e d >> 2)) ;

1 e l s e i f ((C o l o r - > G r e e n - 0) && (C o l o r - > B l u e - 0)) {

1
I* M u l t i - c o l o r m i x ; l o o k u p t h e i n d e x w i t h t h e t w o m o s t s i g n i f i c a n t b i t s

r e t u r n (((C o 1 o r - > R e d & OxCO) >> 2) I ((C o l o r - > G r e e n & OxCO) >> 4) I
o f e a c h c o l o r c o m p o n e n t *I

((C o l o r - > B l u e & OxCO) >> 6));
1

In DEMOl, threequarters of the palette is set up with 64 intensity levels of each of
the three pure primary colors (red, green, and blue), and then most drawing is done
with only pure primary colors. The resulting rendering quality is very good because
there are so many levels of each primary.
The downside is that this excellent quality is available for only three colors: red,
green, and blue. What about all the other colors that are mixes of the primaries, like
cyan or yellow, to say nothing of gray? In the DEMOl color model, any RGB color
that is not a pure primary is mapped into a 2-2-2 RGB space that the remaining
quarter of the VGA's palette is set up to display; that is, there are exactly two bits of
precision for each color component, or 64 general RGB colors in all. This is genu-
inely lousy color resolution, being only 1/64th of the resolution we really need for
each color component. In this model, a staggering 262,144 colors from the 24bit
RGB cube map to each color in the 2-2-2 VGA palette. The results are not impressive;
the colors of mixed-primary surfaces jump abruptly, badly damaging the illusion of
real illumination. To see how poor a 2-2-2 RGB selection can look, run DEMO1, and
press the '2' key to turn on spotlight 2, the blue spotlight. Because the ambient
lighting is green, turning on the blue spotlight causes mixed-primary colors to be
displayed-and the result looks terrible, because there just isn't enough color reso-
lution. Unfortunately, 2-2-2 RGB is close to the best general color resolution the
VGA can display; 3-3-2 is as good as it gets.

1038 Chapter 55

Another approach would be to set up the palette with reasonably good mixes of two
primaries but no mixes of three primaries, then use only two-primary colors in your
applications (no grays or whites or other three-primary mixes). Or you could choose
to shade only selected objects, using part of the palette for a good range of the colors
of those objects, and reserving the rest of the palette for the fixed colors of the other,
nonshaded objects. Jim Kent, author of Autodesk Animator, suggests dynamically
adjusting the palette to the needs of each frame, for example by allocating the colors
for each frame on a first-come, first-served basis. That wouldn’t be trivial to do in real
time, but it would make for extremely efficient use of the palette.
Another widely used solution is to set up a 2-2-2, 3-3-2, or 2.6-2.6-2.6 (6 levels per
primary) palette, and dither colors. Dithering is an excellent solution, but outside
the scope of this book. Take a look at Chapter 13 of Foley and Van Dam (cited in
“Further Readings”) for an introduction to color perception and approximation.
The sad truth is that the VGAs 256-color palette is an inadequate resource for gen-
eral RGB shading. The good news is that clever workarounds can make VGA graphics
look nearly as good as 24bpp graphics; but the burden falls on you, the program-
mer, to design your applications and color mapping to compensate for the VGAs
limitations. To experiment with a different 256color model in X-Sharp, just change
InitializePalette() to set up the desired palette and ModelColorToColorIndex() to
map 24bit RGB triplets into the palette you’ve set up. It’s that simple, and the results
can be striking indeed.

A Bonus from the BitMan
Finally, a note on fast VGA text, which came in from a correspondent who asked to
be referred to simply as the BitMan. The BitMan passed along a nifty application of
the VGA’s under-appreciated write mode 3 that is, under the proper circumstances,
the fastest possible way to draw text in any 16-color VGA mode.
The task at hand is illustrated by Figure 55.2. We want to draw what’s known as solid
text, in which the effect is the same as if the cell around each character was drawn in
the background color, and then each character was drawn on top of the background
box. (This is in contrast to transparent text, where each character is drawn in the
foreground color without disturbing the background.) Assume that each character
fits in an eight-wide cell (as is the case with the standard VGA fonts), and that we’re
drawing text at byte-aligned locations in display memory.
Solid text is useful for drawing menus, text areas, and the like; basically, it can be
used whenever you want to display text on a solid-color background. The obvious
way to implement solid text is to fill the rectangle representing the background box,
then draw transparent text on top of the background box. However, there are two
problems with doing solid text this way. First, there’s some flicker, because for a little
while the box is there but the text hasn’t yet arrived. More important is that the
background-followed-by-foreground approach accesses display memory three times

Color Modeling in 256-Color Mode 1039

Character drawn in foreground color
I

I \ I
\

Character cell (background box)
drawn in background color

Drawing solid text.
Figure 55.2

for each byte of font data: once to draw the background box, once to read display
memory to load the latches, and once to actually draw the font pattern. Display
memory is incredibly slow, so we’d like to reduce the number of accesses as much as
possible. With the BitMan’s approach, we can reduce the number of accesses to just
one per font byte, and eliminate flicker, too.
The keys to fast solid text are the latches and write mode 3. The latches, as you may
recall from earlier discussions in this book, are four internal VGA registers that hold
the last bytes read from the VGA’s four planes; every read from VGA memory loads
the latches with the values stored at that display memory address across the four
planes. Whenever a write is performed to VGA memory, the latches can provide
some, none, or all of the bits written to memory, depending on the bit mask, which
selects between the latched data and the drawing data on a bit-by-bit basis. The latches
solve half our problem; we can fill the latches with the background color, then use
them to draw the background box. The trick now is drawing the text pixels in the
foreground color at the same time.
This is where it gets a little complicated. In write mode 3 (which incidentally is not
available on the EGA) , each byte value that the CPU writes to the VGA does not get
written to display memory. Instead, it turns into the bit mask. (Actually, it’s ANDed
with the Bit Mask register, and the result becomes the bit mask, but we’ll leave the Bit
Mask register set to OxFF, so the CPU value will become the bit mask.) The bit mask
selects, on a bit-by-bit basis, between the data in the latches for each plane (the
previously loaded background color, in this case) and the foreground color. Where
does the foreground color come from, if not from the CPU? From the Set/Reset
register, as shown in Figure 55.3. Thus, each byte written by the CPU (font data,
presumably) selects foreground or background color for each of eight pixels, all
done with a single write to display memory.

1040 Chapter 55

I Bit-mask Register 1 Byte written to VGA memory by CPU

1 1
I AND bit-mask register and CPU data I
I I Set/Reset Register I

“I I I

I

bit-mask is 0;
set/reset bit
where bit-mask

1
(Assumes

written to Map Mask is
Eight bits

memory planes are
display OXOF, so all

written.) V

bit where

1
T

I1

OxFF; a 0

J- c
Selects latch
bit where
bit-mask is 0;
set/reset bit
where bit-mask
bit is I .

1 Eight bits
written to
display
memory

bit where
bit-mask is 0;
set/reset bit
where bit-mask
bit is I .

L

Eight bits
written to
display
memory

set/reset bit
where bit-mask
bit is I .

c J-

Eight bits
written to
display
memory

Memory Memory Memory

The data path in write mode 3.
Figure 55.3

I know this sounds pretty esoteric, but think of it this way: The latches hold the
background color in a form suitable for writing eight background pixels (one full
byte) at a pop. Write mode 3 allows each CPU byte to punch holes in the background
color provided by the latches, holes through which the foreground color from the
Set/Reset register can flow. The result is that a single write draws exactly the combi-
nation of foreground and background pixels described by each font byte written by
the CPU. It may help to look at Listing 55.4, which shows The BitMan’s technique in
action. And yes, this technique is absolutely worth the trouble; it’s about three times
faster than the fill-then-draw approach described above, and about twice as fast as
transparent text. So far as I know, there is no faster way to draw text on a VGA.

Color Modeling in 256-Color Mode I041

It's important to note that the BitMan's technique only works on full bytes of display
memory. There's no way to clip to finer precision; the background color will inevita-
bly flood all of the eight destination pixels that aren't selected as foreground pixels.
This makes The BitMan's technique most suitable for monospaced fonts with char-
acters that are multiples of eight pixels in width, and for drawing to byte-aligned
addresses; the technique can be used in other situations, but is considerably more
difficult to apply.

LISTING 55.4 155-4.ASM
: D e m o n s t r a t e s d r a w i n g s o l i d t e x t on t h e VGA. u s i n g t h e B i t M a n ' s w r i t e mode
: 3 - b a s e d . o n e - p a s s t e c h n i q u e .

CHAR-HEIGHT
SCREEN-HEIGHT
SCREENLSEGMENT
FGLCOLOR
BG-COLOR
GC-INDEX
SETLRESET
G-MODE
BIT-MASK

.model

. s t a c k

. d a t a
L i n e
CharHe igh t
MaxL ines
L ineWid thBy tes
F o n t P t r
S a m p l e s t r i n g

equ 8
equ 480
equ OaOOOh
equ 14
equ 1
equ 3ceh
equ 0
equ 5
equ 8

smal 1
200h

dw ?
dw ?
dw ?
dw ?
dd ?
l a b e l b v t e

:# o f s c a n l i n e s p e r c h a r a c t e r (m u s t b e < 2 5 6)
:# o f s c a n l i n e s p e r s c r e e n
:where sc reen memory i s
: t e x t c o l o r
: b a c k g r o u n d b o x c o l o r
: G r a p h i c s C o n t r o l l e r (G C) I n d e x r e g 1/0 p o r t
: S e t / R e s e t r e g i s t e r i n d e x i n GC
:Graph ics Mode r e g i s t e r i n d e x i n GC
: B i t Mask r e g i s t e r i n d e x i n GC

: c u r r e n t l i n e #
:# o f s c a n l i n e s i n e a c h c h a r a c t e r (m u s t b e < 2 5 6)
:max # o f s c a n l i n e s o f t e x t t h a t will f i t on sc reen
: o f f s e t f r o m o n e s c a n l i n e t o t h e n e x t
; p o i n t e r t o f o n t w i t h w h i c h t o d r a w

db 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
db ' a b c d e f g h i j k l m n o p q r s t u v w x y z '
db ' 0 1 2 3 4 5 6 7 8 9 ! @ ~ ~ S % A & * 0 . < . > / ? ; : ' . 0

.code
s t a r t :

mov
mov

mov
i n t

mov
mov
mov
i n t
mov
mov

mov
mov
mov
sub
d i v
mu1
mov

ax .@data
ds .ax

ax, 12h
10h : s e l e c t 6 4 0 x 4 8 0 1 6 - c o l o r mode

a h . l l h :BIOS c h a r a c t e r g e n e r a t o r f u n c t i o n
a1 .30h :BIOS g e t f o n t p o i n t e r s u b f u n c t i o n
b h . 3 : g e t 8 x 8 ROM f o n t s u b s u b f u n c t i o n
1 0 h : g e t t h e p o i n t e r t o t h e B I O S 8x8 f o n t
w o r d p t r C F o n t P t r 1 . b ~
w o r d p t r C F o n t P t r + E l . e s

bx.CHAR-HEIGHT
C C h a r H e i g h t 1 . b ~ :# o f s c a n l i n e s p e r c h a r a c t e r
ax.SCREEN-HEIGHT
dx , dx
b x
b x :max # o f f u l l s c a n l i n e s o f t e x t t h a t
[M a x L i n e s l , a x : will f i t on t h e s c r e e n

1042 Chapter 55

mov a h . 0 f h : B I O S v i d e o s t a t u s f u n c t i o n
i n t 10h : ge t # o f c o l u m n s (b y t e s) p e r r o w
mov a1 , a h ; c o n v e r t b y t e c o l u m n s v a r i a b l e i n
sub ah.ah : AH t o w o r d i n A X
mov C L i n e W i d t h B y t e s 1 , a x : w i d t h o f s c a n l i n e i n b y t e s

: n o w d r a w t h e t e x t
sub bx.bx
mov [L i n e] , b x : s t a r t a t s c a n l i n e 0

s u b a x . a x ; s t a r t a t c o l u m n 0; must be a m u l t i p l e o f 8
mov ch , FG-COLOR : c o l o r i n w h i c h t o d r a w t e x t
mov c l .BG-COLOR : c o l o r i n w h i c h t o d r a w b a c k g r o u n d b o x
mov s i . o f f s e t S a m p l e s t r i n g : t e x t t o d r a w
c a l l D r a w T e x t S t r i n g : d r a w t h e s a m p l e t e x t
mov bx . I: L i n e]
add bx . [CharHe igh t] :# o f n e x t s c a n l i n e t o d r a w o n
mov C L i n e 1 . b ~
cmp bx , [MaxL i nes] ; done ye t?
j b L i n e L o o p : n o t y e t

mov ah.7
i n t 2 1 h : w a i t f o r a k e y p r e s s , w i t h o u t e c h o

mov ax.03h
i n t 10h :back t o t e x t mode

mov ah .4ch
i n t 21h ; e x i t t o DOS

L ineLoop:

: Draws a t e x t s t r i n g .
: I n p u t : AX = X c o o r d i n a t e a t w h i c h t o d r a w u p p e r - l e f t c o r n e r o f f i r s t c h a r
: BX - Y c o o r d i n a t e a t w h i c h t o d r a w u p p e r - l e f t c o r n e r o f f i r s t c h a r
: CH = f o r e g r o u n d (t e x t) c o l o r
: CL - b a c k g r o u n d (b o x) c o l o r
: D S : S I - p o i n t e r t o s t r i n g t o d r a w , z e r o t e r m i n a t e d
: C h a r H e i g h t m u s t b e s e t t o t h e h e i g h t o f e a c h c h a r a c t e r
: F o n t P t r m u s t b e s e t t o t h e f o n t w i t h w h i c h t o d r a w

: D o n ' t c o u n t on a n y r e g i s t e r s o t h e r t h a n DS. SS. and S P b e i n g p r e s e r v e d .
: The X c o o r d i n a t e i s t r u n c a t e d t o a m u l t i p l e o f 8. C h a r a c t e r s a r e

L i n e W i d t h B y t e s m u s t b e s e t t o t h e s c a n l i n e w i d t h i n b y t e s

: assumed t o be 8 p i x e l s w i d e .

D r a w T e x t S t r i n g p r o c n e a r
a l i g n 2

c l d
s h r a x . 1
s h r a x . 1
s h r a x . 1
mov d i , a x
mov ax .CL ineWid thBy tes1
mu1 b x
add d i , a x
mov ax.SCREENKSEGMENT
mov es .ax

mov dx,GC-INDEX
mov a x . (O f f h SHL 8) + BIT-MASK
o u t d x . a x

; b y t e a d d r e s s o f s t a r t i n g X w i t h i n s c a n l i n e

; s t a r t o f f s e t o f i n i t i a l s c a n l i n e
; s t a r t o f f s e t o f i n i t i a l b y t e

;ES:DI - o f f s e t o f i n i t i a l c h a r a c t e r ' s
: f i r s t s c a n l i n e
: s e t up t h e V G A ' s hardware s o t h a t we can
: fill t h e l a t c h e s w i t h t h e b a c k g r o u n d c o l o r

: s e t B i t Mask r e g i s t e r t o OxFF (t h a t ' s t h e
: d e f a u l t , b u t I ' m d o i n g t h i s j u s t t o make s u r e

Color Modeling in 256-Color Mode 1043

mov ax , (003h SHL 8) + G-MODE
o u t d x . a x
mov a h . c l
mov a1 .SET-RESET
o u t d x . a x
mov b y t e p t r e s : [O f f f f h l . O f f h

mov c l . e s : [O f f f f h l

mov ah.ch
o u t dx.ax

DrawTextLoop:
1 odsb
and a1 .a1
j z DrawTextDone
push ds
p u s h s i
p u s h d i

mov d x , [L i n e W i d t h B y t e s l
dec dx
mov cx .CCharHe igh t1
mu1 c l
I d s s i . C F o n t P t r l
add s i ,ax

DrawCharLoop:
movsb

add d i . d x
loop DrawCharLoop

pop d i
i n c d i
pop s i
POP ds
jmp DrawTextLoop

a l i g n 2
DrawTextDone:

mov dx.GC-INDEX
mov ax , (000h SHL 8) + G-MODE
o u t d x . a x
r e t

D r a w T e x t S t r i n g e n d p
e n d s t a r t

; y o u u n d e r s t a n d t h a t B i t Mask r e g i s t e r a n d
; CPU d a t a a r e ANDed i n w r i t e mode 3)

; s e l e c t w r i t e mode 3
; b a c k g r o u n d c o l o r

; s e t t h e d r a w i n g c o l o r t o b a c k g r o u n d c o l o r
; w r i t e 8 p i x e l s o f t h e b a c k g r o u n d
; c o l o r t o u n u s e d o f f - s c r e e n memory
; r e a d t h e b a c k g r o u n d c o l o r b a c k i n t o t h e
; l a t c h e s ; t h e l a t c h e s a r e now f i l l e d w i t h
; t h e b a c k g r o u n d c o l o r . T h e v a l u e i n CL
; d o e s n ' t m a t t e r , we j u s t n e e d e d a t a r g e t
: f o r t h e r e a d , s o we c o u l d l o a d t h e l a t c h e s
; f o r e g r o u n d c o l o r
: s e t t h e S e t / R e s e t (d r a w i n g) c o l o r t o t h e
; f o r e g r o u n d c o l o r
; w e ' r e r e a d y t o d r a w !

; n e x t c h a r a c t e r t o d r a w
;end o f s t r i n g ?

;yes
;remember s t r i n g ' s segment
;remember o f f s e t o f n e x t c h a r a c t e r i n s t r i n g
: r e m e m b e r d r a w i n g o f f s e t
; l o a d t h e s e v a r i a b l e s b e f o r e we w i p e o u t DS
: o f f s e t f r o m o n e l i n e t o n e x t
; c o m p e n s a t e f o r STOSB

; o f f s e t o f c h a r a c t e r i n f o n t t a b l e
; p o i n t t o f o n t t a b l e
: p o i n t t o s t a r t o f c h a r a c t e r t o d r a w
; t h e f o l l o w i n g l o o p s h o u l d b e u n r o l l e d f o r
; maximum per fo rmance !
;draw a l l l i n e s o f t h e c h a r a c t e r
; g e t t h e n e x t b y t e o f t h e c h a r a c t e r a n d d r a w
; c h a r a c t e r ; d a t a i s ANDed w i t h B i t Mask
: r e g i s t e r t o become b i t mask , and se lec ts
; b e t w e e n l a t c h (c o n t a i n i n g t h e b a c k g r o u n d
; c o l o r) a n d S e t / R e s e t r e g i s t e r (c o n t a i n i n g
; f o r e g r o u n d c o l o r)
; p o i n t t o n e x t l i n e o f d e s t i n a t i o n

; r e t r i e v e i n i t i a l d r a w i n g o f f s e t
; d r a w i n g o f f s e t f o r n e x t c h a r
; r e t r i e v e o f f s e t o f n e x t c h a r a c t e r i n s t r i n g
; r e t r i e v e s t r i n g ' s segment
; d r a w n e x t c h a r a c t e r , i f any

; r e s t o r e t h e G r a p h i c s Mode r e g i s t e r t o i t s
; d e f a u l t s t a t e o f w r i t e mode 0

; s e l e c t w r i t e mode 0

1044 Chapter 55

	previous:
	home:
	next:

