
chapter 56

pooh and the space station

exture Mapping to Place Pooh on a Polygon
lives: in a space station orbiting Saturn. No, really;
er, and an eight-year-old wouldn’t make up some-
? One day she wondered aloud, “Where is the

before I could give one of those boring parental
ary-but A.A. Milne probably imagined it to be
ghter announced that the Hundred Acre Wood

’s a very good location for the Hundred Acre Wood, leading to
es for Pooh and Piglet. Consider the time they went down to
(we’re talking centrifugal force here; the station is spinning,

of course) and nearlykurned into pancakes of the Pooh and Piglet varieties, respec-
tively. Or the time they drifted out into the free-fall area at the core and had to be
rescued by humans with wings strapped on (a tip of the hat to Robert Heinlein here).
Or the time they were caught up by the current in the river through the Wood and
drifted for weeks around the circumference of the station, meeting many cultures
and finding many adventures along the way, (Yes, Farmer’s Riverworld; no one said
the stories you tell your children need to be purely original, just interesting.)
(If you think Pooh and Piglet in a space station is a tad peculiar, then I won’t even
mention Karla, the woman who invented agriculture, medicine, sanitation, reading
and writing, peace, and just about everything else while travelling the length of the

orbiting Saturn, and there you have it.

1047

Americas with her mountain lion during the last Ice Age; or the Mars Cats and their
trip in suspended animation to the Lesser Magellenic Cloud and beyond; or most
assuredly Little Whale, the baby Universe Whale that is naughty enough to eat in-
habited universes. But I digress.)
Anyway, I bring up Pooh and the space station because the time has come to discuss
fast texture mapping. Texture mapping is the process of mapping an image (in our
case, a bitmap) onto the surface of a polygon that’s been transformed in the process
of 3-D drawing. Up to this point, each polygon we’ve drawn in X-Sharp has been a
single, solid color. Over the last couple of chapters we added the ability to shade
polygons according to lighting, but each polygon was still a single color. Thus, in
order to produce any sort of intricate design, a great many tiny polygons would have
to be drawn. That would be very slow, so we need another approach. One such ap-
proach is texture mapping; that is, mapping the bitmap containing the desired image
onto the pixels contained within the transformed polygon. Done properly, this should
make it possible to change X-Sharp’s output from a bland collection of monocolor
facets to a lively, detailed, and much more realistic scene.
‘What sort of scene?” you may well ask. This is where Pooh and the space station
came in. When I sat down to think of a sample texture-mapping application, it oc-
curred to me that the shaded ball demo we added to X-Sharp recently looked at least
a bit like a spinning, spherical space station, and that the single unshaded, yellow
polygon looked somewhat like a window in the space station, and it might be a nice
example if someone were standing in the window. ...
The rest is history.

Principles of Quick-and-Dirty Texture Mapping
The key to our texture-mapping approach will be to quickly determine what pixel
value to draw for each pixel in the transformed destination polygon. These polygon
pixel values will be determined by mapping each destination pixel in the transformed
polygon back to the image bitmap, via a reverse transformation, and seeing what
color resides at the corresponding location in the image bitmap, as shown in Figure
56.1. It might seem more intuitive to map pixels the other way, from the image bitmap
to the transformed polygon, but in fact it’s crucial that the mapping proceed back-
ward from the destination to avoid gaps in the final image. With the approach of
finding the right value for each destination pixel in turn, via a backward mapping,
there’s no way we can miss any destination pixels. On the other hand, with the for-
ward-mapping method, some destination pixels may be skipped or double-drawn,
because this is not necessarily a one-to-one or one-to-many mapping. Although we’re
not going to take advantage of it now, mapping back to the source makes it possible
to average several neighboring image pixels together to calculate the value for each
destination pixel; that is, to antialias the image. This can greatly improve texture
quality, although it is slower.

1048 Chapter 56

Mapping Textures Made Easy
To understand how we’re going to map textures, consider Figure 56.2, which maps a
bitmapped image directly onto an untransformed polygon. Here, we simply map the
origin of the polygon’s untransformed coordinate system somewhere within the im-
age, then map the vertices to the corresponding image pixels. (For simplicity, I’ll
assume in this discussion that the polygon’s coordinate system is in units of pixels,
but scaling images to polygons is eminently doable. This will become clearer when
we look at mapping images onto transformed polygons, next.) Mapping the image
to the polygon is then a simple matter of stepping one scan line at a time in both the

Pooh and the Space Station 1049

colol: Using Using reverse reverse transformation transformation the source pixel colol:
Figure 56.1
Using reverse transformation to find the source pixel colol:
Figure 56.1

g a
Figure 56.2

Mapping a texture onto an untransformed polygon

image and the polygon, each time advancing the X coordinates of the edges accord-
ing to the slopes of the lines, just as is normally done when filling a polygon. Since
the polygon is untransformed, the stepping is identical in both the image and the
polygon, and the pixel mapping is one-to-one, so the appropriate part of each scan
line of the image can simply be block copied to the destination.
Now, matters get more complicated. What if the destination polygon is rotated in
two dimensions? We no longer have a neat direct mapping from image scan lines to
destination polygon scan lines. We still want to draw across each destination scan
line, but the proper source pixels for each destination scan line may now track across
the source bitmap at an angle, as shown in Figure 56.3. What can we do?
The solution is remarkably simple. We’ll just map each transformed vertex to the
corresponding vertex in the bitmap; this is easy, because the vertices are at the same
indices in the original and transformed vertex lists. Each time we select a new edge
to scan for the destination polygon, we’ll select the corresponding edge in the source
bitmap, as well. Then-and this is crucial-each time we step a destination edge one
scan line, we’ll step the corresponding source image edge an equivalent amount.
Ah, but what is an “equivalent amount”? Think of it this way. If a destination edge is
100 scan lines high, it will be stepped 100 times. Then, we’ll divide the SourceXWidth
and SourceYHeight lengths of the source edge by 100, and add those amounts to the
source edge’s coordinates each time the destination is stepped one scan line. Put
another way, we have, as usual, arranged things so that in the destination polygon we
step DestYHeight times, where DestYHeight is the height of the destination edge.
The this approach arranges to step the source image edge DestYHeight times also,
to match what the destination is doing.

1050 Chapter 56

Now we’re able to track the coordinates of the polygon edges through the source
image in tandem with the destination edges. Stepping across each destination scan
line uses precisely the same technique, as shown in Figure 56.4. In the destination,
we step DestXWidth times across each scan line of the polygon, once for each pixel
on the scan line. (DestXWidth is the horizontal distance between the two edges be-
ing scanned on any given scan line.) To match this, we divide SourceXWidth and
SourceYHeight (the lengths of the scan line in the source image, as determined by
the source edge points we’ve been tracking, as just described) by the width of the
destination scan line, DestXWidth, to produce SourceXStep and SourceYStep. Then,
we just step DestXWidth times, adding SourceXStep and SourceYStep to SourceX
and SourceY each time, and choose the nearest image pixel to (SourceX,SourceY)
to copy to (DestX,DestY). (Note that the names used above, such as SourceXWidth,
are used for descriptive purposes, and don’t necessarily correspond to the actual
variable names used in Listing 56.2.)
That’s a workable approach for 2-D rotated polygons-but what about 3-D rotated
polygons, where the visible dimensions of the polygon can vary with 3-D rotation and
perspective projection? First, I’d like to make it clear that texture mapping takes
place from the source image to the destination polygon after the destination polygon is
projected to the screen. That is, the image will be mapped after the destination
polygon is in its final, drawable form. Given that, it should be apparent that the above
approach automatically compensates for all changes in the dimensions of a polygon.
You see, this approach divides source edges and scan lines into however many steps
the destination polygon requires. If the destination polygon is much narrower than
the source polygon, as a result of 3-D rotation and perspective projection, we just
end up taking bigger steps through the source image and skipping a lot of source
image pixels, as shown in Figure 56.5. The upshot is that the above approach handles

Source image
(texture to map)

Transformed (2-D rotated) destination
polygon (onto which texture is mapped)

Mapping a horizontal destination scan line back to the source image.
Figure 56.4

Pooh and the Space Station 1051

all transformations and projections effortlessly. It could also be used to scale source
images up to fit in larger polygons; all that’s needed is a list of where the polygon’s
vertices map into the source image, and everything else happens automatically. In
fact, mapping from any polygonal area of a bitmap to any destination polygon will
work, given only that the two polygons have the same number of vertices.

Notes on DDA Texture Mapping
That’s all there is to quick-and-dirty texture mapping. This technique basically uses a
two-stage digital differential analyzer (DDA) approach to step through the appropri-
ate part of the source image in tandem with the normal scan-line stepping through
the destination polygon, so I’ll call it “DDA texture mapping.” It’s worth noting that
there is no need for any trigonometric functions at all, and only two divides are
required per scan line.
This isn’t a perfect approach, of course. For one thing, it isn’t anywhere near as fast
as drawing solid polygons; the speed is more comparable to drawing each polygon as
a series of lines. Also, the DDA approach results in far from perfect image quality,
since source pixels may be skipped or selected twice. I trust, however, that you can
see how easy it would be to improve image quality by antialiasing with the DDA
approach. For example, we could simply average the four surrounding pixels as we
did for simple, unweighted antialiasing in Chapters F, G, and Chapter K on the com-
panion CD-ROM. Or, we could take a Wu antialiasing approach (see Chapter 5 7)
and average the two bracketing pixels along each axis according to proximity. If we
had cycles to waste (which, given that this is real-time animation on a PC, we don’t),
we could improve image quality by putting the source pixels through a low-pass filter
sized in X and Y according to the ratio of the source and destination dimensions
(that is, how much the destination is scaled up or down from the source).

1052 Chapter 56

Source image

(texture to map)

Transformed (narrower *) destination

polygon (onto which texture is mapped)

Mapping a texture onto a narrower polygon.
Figure 56.5

Even more important is that the sort of texture mapping I’ll do in X-Sharp doesn’t
correct for perspective. That doesn’t much matter for small polygons or polygons
that are nearly parallel to the screen in 3-space, but it can produce very noticeable
bowing of textures on large polygons at an angle to the screen. Perspective texture
mapping is a complex subject that’s outside the scope of this book, but you should
be aware of its existence, because perspective texture mapping is a key element of
many games these days.
Finally, I’d like to point out that this sort of DDA texture mapping is display-hardware
dependent, because the bitmap for each image must be compatible with the num-
ber of bits per pixel in the destination. That’s actually a fairly serious issue. One of
the nice things about X-Sharp’s polygon orientation is that, until now, the only dis-
play dependent part of X-Sharp has been the transformation from RGB color space
to the adapter’s color space. Compensation for aspect ratio, resolution, and the like
all happens automatically in the course of projection. Still, we need the ability to
display detailed surfaces, and it’s hard to conceive of a fast way to do so that’s totally
hardware independent. (If you know of one, let me know care of the publisher.)
For now, all we need is fast texture mapping of adequate quality, which the straight-
forward, non-antialiased DDA approach supplies. I’m sure there are many other fast
approaches, and, as I’ve said, there are more accurate approaches, but DDA texture
mapping works well, given the constraints of the PC’s horsepower. Next, we’ll look at
code that performs DDA texture mapping. First, though, I’d like to take a moment
to thank Jim Kent, author of Autodesk Animator and a frequent correspondent, for
getting me started with the DDA approach.

Fast Texture Mapping: An Implementation
As you might expect, I’ve implemented DDA texture mapping in X-Sharp, and the
changes are reflected in the X-Sharp archive in this chapter’s subdirectory on the
listings disk. Listing 56.1 shows the new header file entries, and Listing 56.2 shows
the actual texture-mapped polygon drawer. The set-pixel routine that Listing 56.2
calls is a slight modification of the Mode X set-pixel routine from Chapter 47. In
addition, 1NITBALL.C has been modified to create three texture-mapped polygons
and define the texture bitmaps, and modifications have been made to allow the user
to flip the axis of rotation. You will of course need the complete X-Sharp library to
see texture mapping in action, but Listings 56.1 and 56.2 are the actual texture map-
ping code in its entirety.

Here b a major tip: DDA texture mapping look best on fast-moving surfaces, where p the eye doesn ’t have time to pick nits with the shearing and aliasing that’s an inevitable
by-product of such a crude approach. Compile DEMO1 from the X-Sharp archive
in this chapter b subdirectory of the listings disk, and run it. The initial display
looks okay, but certainly not great, because the rotational speed is so slow. Now

Pooh and the Space Station 1053

press the S key a f a y times to speed up the rotation and flip between different
rotation axes. I think you'll be amazed at how much better DDA texture mapping
looks at high speed. This technique would be greatfor mapping textures onto hur-
tling asteroids orjets, but would come up shortfor slow,finely detailed movements.

LISTING 56.1 156- 1 .C
/* New header f i l e e n t r i e s r e l a t e d t o t e x t u r e - m a p p e d p o l y g o n s */

/* Draws t h e p o l y g o n d e s c r i b e d b y t h e p o i n t l i s t P o i n t L i s t w i t h a b i tmap
t e x t u r e mapped o n t o i t */

i d e f i n e DRAW_TEXTURED-POLYGON(PointList.NumPoints,TexVerts,TexMap) \
Polygon.Length - NumPoints ; Polygon.PointPt r - P o i n t L i s t ; \
DrawTexturedPolygon(&Polygon. TexVerts. TexMap):

d e f i n e FIXED-TO-INT(FixedVa1) ((i n t) (F i x e d V a l >> 16))
d e f i n e ROUND-FIXED-TO_INT(FixedVal) \

((i n t) ((F i x e d V a l + DOUBLE-TO_FIXED(0.5)) >> 16))
/* R e t r i e v e s s p e c i f i e d p i x e l f r o m s p e c i f i e d i m a g e b i t m a p o f s p e c i f i e d w i d t h . * /
d e f i n e GET-IMAGE-PIXEL(TexMapBits. TexMapWidth, X . Y) \

d e f i n e NO-SHADING
/* Masks t o mark shad ing types i n Face s t r u c t u r e * /

0x0000
d e f i n e AMBIENT-SHADING Ox0001
d e f i n e DIFFUSE-SHADING Ox0002
i d e f i n e TEXTURE-MAPPED-SHADING 0x0004
/* Desc r ibes a t e x t u r e map */
t y p e d e f s t r u c t {

TexMapBits[(Y * TexMapWidth) + X]

i n t TexMapWidth; / * t e x t u r e map w i d t h i n b y t e s */
char *TexMapBits; / * p o i n t e r t o t e x t u r e b i t m a p */

I TextureMap;

/ * S t r u c t u r e d e s c r i b i n g o n e f a c e o f a n o b j e c t (o n e p o l y g o n) * /
t y p e d e f s t r u c t I

i n t * VertNums: / * p o i n t e r t o l i s t o f i n d e x e s o f t h i s p o l y g o n ' s v e r t i c e s
i n t h e o b j e c t ' s v e r t e x l i s t . The f i r s t t w o i n d e x e s
m u s t s e l e c t e n d a n d s t a r t p o i n t s , r e s p e c t i v e l y , o f t h i s
p o l y g o n ' s u n i t n o r m a l v e c t o r . Second p o i n t s h o u l d a l s o
b e a n a c t i v e p o l y g o n v e r t e x * /

v e r t e x , w h i c h m u s t b e t h e e n d o f a u n i t n o r m a l v e c t o r
t h a t s t a r t s a t t h e s e c o n d i n d e x i n VertNums */

i n t NumVerts; / * # o f v e r t s i n f a c e , n o t i n c l u d i n g t h e i n i t i a l

i n t C o l o r I n d e x ; / * d i r e c t p a l e t t e i n d e x ; u s e d o n l y f o r n o n - s h a d e d f a c e s */
M o d e l C o l o r F u l l C o l o r ; / * p o l y g o n ' s c o l o r * /
i n t ShadingType: / * n o n e , a m b i e n t , d i f f u s e , t e x t u r e mapped, e t c . * /
TextureMap * TexMap; / * p o i n t e r t o b i t m a p f o r t e x t u r e m a p p i n g , i f any */
P o i n t TexVer t s ; / * p o i n t e r t o l i s t o f t h i s p o l y g o n ' s v e r t i c e s , i n

Tex tu reMap coo rd ina tes . I ndex n must map t o i n d e x
n + 1 i n VertNums. (t h e + 1 i s t o s k i p o v e r t h e u n i t
normal endpo in t i n VertNums) * /

1 Face;
e x t e r n v o i d DrawTex tu redPo lygon(Po in tL i s tHeader *, P o i n t *, TextureMap *) ;

LISTING 56.2 156-2.C
/* Draws a b i tmap . mapped t o a convex po lygon (draws a t e x t u r e - m a p p e d p o l y g o n) .

"Convex" means t h a t e v e r y h o r i z o n t a l l i n e d r a w n t h r o u g h t h e p o l y g o n a t a n y
p o i n t w o u l d c r o s s e x a c t l y t w o a c t i v e e d g e s (n e i t h e r h o r i z o n t a l l i n e s n o r
ze ro - leng th edges coun t as ac t i ve edges ; bo th a re accep tab le anywhere i n
t h e p o l y g o n) . a n d t h a t t h e r i g h t & l e f t edges never cross. Nonconvex
p o l y g o n s w o n ' t b e d r a w n p r o p e r l y . C a n ' t f a i l . * /

1054 Chapter 56

#i n c l ude < s t d i 0. h>
#i n c l ude <math. h>
inc lude "po l ygon . h "
/ * D e s c r i b e s t h e c u r r e n t l o c a t i o n and s tepping, i n b o t h t h e s o u r c e and

t h e d e s t i n a t i o n , o f an edge * /
t y p e d e f s t r u c t I

i n t D i r e c t i on :

i n t Remai n i ngScans :
i n t CurrentEnd:
F ixedpo in t SourceX;
F ixedpo in t SourceY:
F ixedpo in t SourceStepX;
F ixedpo in t SourceStepY:

i n t DestX:
i n t D e s t X I n t S t e p :
i n t D e s t X D i r e c t i o n :
i n t DestXErrTerm:
i n t DestXAdjUp:
i n t DestXAdjDown;

1 EdgeScan:
i n t StepEdge(EdgeScan *) :

/ * t h r o u g h e d g e l i s t : 1 f o r a r i g h t edge (f o r w a r d
t h r o u g h v e r t e x l i s t) , -1 f o r a l e f t edge (backward
t h r o u g h v e r t e x l i s t) * /

I* h e i g h t l e f t t o scan ou t i n d e s t * I
/* v e r t e x # o f end o f cu r ren t edge */
I* c u r r e n t X l o c a t i o n i n s o u r c e f o r t h i s edge * I
I* c u r r e n t Y l o c a t i o n i n s o u r c e f o r t h i s edge */
I* X s t e p i n s o u r c e f o r Y s t e p i n d e s t o f 1 */
I* Y s t e p i n s o u r c e f o r Y s t e p i n d e s t o f 1 * I
/* v a r i a b l e s u s e d f o r a l l - i n t e g e r B r e s e n h a m ' s - t y p e

X s t e p p i n g t h r o u g h t h e d e s t , n e e d e d f o r p r e c i s e
p i x e l p l a c e m e n t t o a v o i d g a p s * I

I* c u r r e n t X l o c a t i o n i n d e s t f o r t h i s edge */
/* w h o l e p a r t o f d e s t X s t e p p e r s c a n - l i n e Y s t e p */
/* -1 o r 1 t o i n d i c a t e way X s t e p s (l e f t / r i g h t) */
I* c u r r e n t e r r o r t e r m f o r d e s t X s t e p p i n g * /
I* amount t o add t o e r r o r t e r m p e r s c a n l i n e move */
I* amount t o s u b t r a c t f r o m e r r o r t e r m when t h e

e r r o r t e r m t u r n s o v e r * /

i n t SetUpEdge(EdgeScan *, i n t) :
void ScanOutLine(EdgeScan *, EdgeScan *) :
i n t G e t I m a g e P i x e l (c h a r *, i n t . i n t . i n t) ;
/ * S t a t i c s t o s a v e t i m e t h a t w o u l d o t h e r w i s e p a s s t h e m t o s u b r o u t i n e s . */
s t a t i c i n t M a x V e r t . N u m V e r t s . D e s t Y :
s t a t i c P o i n t * V e r t e x P t r :
s t a t i c P o i n t * T e x V e r t s P t r :
s t a t i c c h a r * TexMapBits:
s t a t i c i n t TexMapWidth;
/ * Draws a t ex tu re -mapped po l ygon , g i ven a l i s t o f d e s t i n a t i o n p o l y g o n

v e r t i c e s , a l i s t o f c o r r e s p o n d i n g s o u r c e t e x t u r e p o l y g o n v e r t i c e s , and a
p o i n t e r t o t h e s o u r c e t e x t u r e ' s d e s c r i p t o r . * /

TextureMap * TexMap)

i n t MinY. MaxY. M i n V e r t . i:
EdgeScan Lef tEdge. RightEdge:
NumVerts - Polygon->Length :
V e r t e x P t r = P o l y g o n - > P o i n t P t r ;
T e x V e r t s P t r - TexVer ts :
TexMapBits - TexMap->TexMapBits;
TexMapWidth - TexMap->TexMapWidth:
/ * N o t h i n g t o d r a w i f l e s s t h a n 3 v e r t i c e s */
i f (NumVerts < 3) {

1
/ * Scan t h r o u g h t h e d e s t i n a t i o n p o l y g o n v e r t i c e s and f i n d t h e t o p o f t h e

v o i d DrawTex tu redPo lygon(Po in tL i s tHeader * Po lygon , Po in t * TexVer ts ,

(

r e t u r n :

l e f t and r i g h t edges, t a k i n g a d v a n t a g e o f o u r k n o w l e d g e t h a t v e r t i c e s r u n
i n a c l o c k w i s e d i r e c t i o n (e l s e t h i s p o l y g o n w o u l d n ' t b e v i s i b l e due t o
back face remova l) * /

MinY - 32767;
MaxY - -32768;
f o r (i - 0 : i < N u m V e r t s : itc) (

Pooh and the Space Station 1055

i f

1
i f

1
1

(V e r t e x P t r [i l . Y < MinY) {
MinY - Ver texPt rC i1 .Y ;
M i n V e r t - i ;
(V e r t e x P t r C i 1 . Y > MaxY) {
MaxY - V e r t e x P t r C i 1 . Y ;
MaxVert - i;

/* R e j e c t flat (0 - p i x e l - h i g h) p o l y g o n s */
i f (MinY >- MaxY) I

1
/* The d e s t i n a t i o n Y c o o r d i n a t e i s n o t e d g e s p e c i f i c ; i t a p p l i e s t o

DestY - MinY;
/ * Set up t o s c a n t h e i n i t i a l l e f t and r i g h t edges o f t h e s o u r c e a n d

r e t u r n ;

bo th edges , s ince we a lways s tep Y by 1 */

d e s t i n a t i o n p o l y g o n s . We a l w a y s s t e p t h e d e s t i n a t i o n p o l y g o n e d g e s
by one i n Y . so c a l c u l a t e t h e c o r r e s p o n d i n g d e s t i n a t i o n X s t e p f o r
each edge, and then the corresponding source image X and Y s t e p s */

L e f t E d g e . D i r e c t i o n - -1; /* s e t u p l e f t edge f i r s t * /
SetUpEdge(&Lef tEdge. M inVer t) ;
R i g h t E d g e . D i r e c t i o n - 1; /* s e t up r i g h t edge */
SetUpEdge(&RightEdge. MinVert) ;
/ * Step down d e s t i n a t i o n e d g e s one scan l i n e a t a t i m e . A t each scan

l i n e . f i n d t h e c o r r e s p o n d i n g e d g e p o i n t s i n t h e s o u r c e i m a g e . Scan
be tween the edge po in ts i n t h e s o u r c e , d r a w i n g t h e c o r r e s p o n d i n g
p i x e l s a c r o s s t h e c u r r e n t s c a n l i n e i n t h e d e s t i n a t i o n p o l y g o n . (We
know wh ich way t h e l e f t and r i g h t e d g e s r u n t h r o u g h t h e v e r t e x l i s t
because v i s i b l e (n o n - b a c k f a c e - c u l l e d) p o l y g o n s a l w a y s h a v e t h e v e r t i c e s
i n c l o c k w i s e o r d e r as seen f rom the v iewpo in t) * /

f o r (; : I
/*
i f

/*
i f

1
/*

i f

1
i f

1

Done i f o f f b o t t o m o f c l i p r e c t a n g l e * /
(DestY >- Cl ipMaxY) I
r e t u r n ;

Draw o n l y i f i n s i d e Y bounds o f c l i p r e c t a n g l e * /
(DestY >- C l i p M i n Y) {
/ * Draw t h e s c a n l i n e b e t w e e n t h e t w o c u r r e n t e d g e s */
ScanOutL ine(&Lef tEdge. &Righ tEdge) ;

Advance the source and des t ina t ion po lygon edges , end ing i f we've
scanned a l l t h e way t o t h e b o t t o m o f t h e p o l y g o n */
(!S tepEdge(&Lef tEdge)) {
b reak :

(!S tepEdge(&RightEdge)) {
b reak ;

I
DestY++;

1
/* Steps an edge one scan l i n e i n t h e d e s t i n a t i o n , and t h e c o r r e s p o n d i n g

d i s t a n c e i n t h e s o u r c e . I f an edge runs ou t , s ta r t s a new edge i f t h e r e
i s one. Returns 1 f o r s u c c e s s . o r 0 i f the re a re no more edges t o scan . * /

i n t StepEdge(EdgeScan * Edge)
{

/ * Count o f f t h e s c a n l i n e we s t e p p e d l a s t t i m e ; i f t h i s edge i s

i f (--Edge->Remaininsscans - 0) { f i n i s h e d , t r y t o s t a r t a n o t h e r one */

1056 Chapter 56

/* Set up the next edge; done i f t h e r e i s no n e x t edge * I
i f (SetUpEdge(Edge. Edge-XurrentEnd) -- 0) I

I
r e t u r n (1) ; / * all s e t t o d r a w t h e new edge */

r e t u r n (0) : I* no more edges: done drawing polygon * /

1
I* Step t he cu r ren t sou rce edge * I
Edge->SourceX +- Edge->SourceStepX;
Edge->SourceY +- Edge->SourceStepY;
/ * S tep des t X w i t h B r e s e n h a m - s t y l e v a r i a b l e s , t o g e t p r e c i s e d e s t p i x e l

Edge->DestX += Edge->DestXIn tStep ; / * w h o l e p i x e l s t e p * /
/* Do e r r o r t e r m s t u f f f o r f r a c t i o n a l p i x e l X s t e p h a n d l i n g */
i f ((Edge->DestXErrTerrn +- Edge->DestXAdjUp) > 0) I

placement a n d a v o i d g a p s */

Edge->DestX +- Edge->DestXDi rec t ion :
Edge->DestXErrTerm -= Edge->DestXAdjDown;

1
r e t u r n (1) ;

1
/ * Sets up an edge t o be scanned; the edge s ta r ts a t S t a r t V e r t and proceeds

i n d i r e c t i o n E d g e - > D i r e c t i o n t h r o u g h t h e v e r t e x l i s t . E d g e - > D i r e c t i o n m u s t
be s e t p r i o r t o c a l l ; -1 t o scan a l e f t edge (backward th rough the ver tex
l i s t) . 1 t o scan a r i g h t edge (f o r w a r d t h r o u g h t h e v e r t e x l i s t) .
A u t o m a t i c a l l y s k i p s o v e r 0 - h e i g h t e d g e s . R e t u r n s 1 f o r s u c c e s s , o r 0 i f
t h e r e a r e no more edges t o scan. * /

i n t SetUpEdge(EdgeScan * Edge, i n t S t a r t V e r t)
I

i n t N e x t V e r t . D e s t X W i d t h ;
F i x e d p o i n t D e s t Y H e i g h t ;
f o r (; ; I I

/ * Done i f t h i s edge s t a r t s a t t h e b o t t o m v e r t e x * I
i f (S t a r t V e r t =- MaxVert) I

I
/ * Advance t o t h e n e x t v e r t e x , w r a p p i n g if we r u n o f f t h e s t a r t o r end

o f t h e v e r t e x l i s t * /
N e x t V e r t - S t a r t V e r t + E d g e - > D i r e c t i o n ;
i f (N e x t V e r t >- NumVerts) {

I e l s e i f (N e x t V e r t < 0) I

1
I* C a l c u l a t e t h e v a r i a b l e s f o r t h i s edge and done i f t h i s i s n o t a

i f ((Edge->RemainingScans =

r e t u r n (0) ;

N e x t V e r t = 0 ;

N e x t V e r t - NumVerts - 1;

z e r o - h e i g h t edge * I

Ver texPt rCNextVer t1 .Y - V e r t e x P t r C S t a r t V e r t 1 . Y) !- 0) I
DestYHeight - INT-TO_FIXED(Edge->Remaif l ingscans);
Edge->CurrentEnd - N e x t V e r t :
Edge->SourceX = INTLTO-FIXED(TexVertsPtr[StartVert].X);
Edge->SourceY - INT-TOLFIXED(TexVertsPtr[StartVertl.Y);
Edge->SourceStepX - F i x e d D i v (I N T ~ T O L F I X E D (T e x V e r t s P t r [N e x t V e r t l . X ~ -

Edge->SourceStepY = FixedDiv(INT-TOLFIXED(TexVertsPtr[NextVertl.Y) -

/ * Set up Bresenharn-s ty le var iab les fo r des t X s t e p p i n g * /
Edge->OestX - V e r t e x P t r C S t a r t V e r t 1 . X ;
i f ((OestXWid th -

Edge->SourceX. DestYHeight) :

Edge->SourceY. DestYHeight) :

(V e r t e x P t r [N e x t V e r t l . X - Ve r texP t rCSta r tVe r t1 .X)) < 0) I
/* Set up f o r d r a w i n g r i g h t t o l e f t * /
Edge->DestXDi rec t ion = -1;

Pooh and the Space Station 1057

DestXWidth - -DestXWidth;
Edge->DestXErrTerm - 1 - Edge->RemainingScans;
Edge->DestXIn tStep - - (DestXWid th / Edge->RemainingScans):

/ * S e t u p f o r d r a w i n g l e f t t o r i g h t * /
Edge->DestXDi r e c t i on - 1;
Edge->DestXErrTerm - 0;
Edge->DestXIn tStep - DestXWidth / Edge->RemainingScans;

1 e l s e {

1
Edge->DestXAdjUp - DestXWidth % Edge->RemainingScans;
Edge->DestXAdjDown - Edge->RemainingScans;
r e t u r n (1) ; / * success */

1
S t a r t V e r t - N e x t V e r t ; / * k e e p l o o k i n g f o r a non -0 -he igh t edge */

1
1
/* Tex ture-map-draw the scan l ine be tween two edges . * /
void ScanOutLine(EdgeScan * LeftEdge. EdgeScan * RightEdge)
{

F ixedpo in t SourceX - LeftEdge->SourceX:
F ixedpo in t SourceY - LeftEdge->SourceY;
i n t DestX - LeftEdge->DestX;
i n t DestXMax - RightEdge->DestX;
F i xedpo in t Des tWid th ;
F ixedpoint SourceXStep. SourceYStep;
/ * N o t h i n g t o do i f f u l l y X c l i p p e d */
i f ((DestXMax <- C l i p M i n X) 1 1 (DestX >- C l ipMaxX)) {

1
i f ((DestXMax - DestX) <- 0) {

1
I* W i d t h o f d e s t i n a t i o n s c a n l i n e . f o r s c a l i n g . N o t e : b e c a u s e t h i s i s an

i n t e g e r - b a s e d s c a l i n g , i t can have a t o t a l e r r o r o f as much as n e a r l y
one p i x e l . F o r m o r e p r e c i s e s c a l i n g , a l s o m a i n t a i n a f i x e d - p o i n t DestX
i n each edge. and use i t f o r s c a l i n g . I f t h i s i s done, i t will a l s o
b e n e c e s s a r y t o n u d g e t h e s o u r c e s t a r t c o o r d i n a t e s t o t h e r i g h t b y an
a m o u n t c o r r e s p o n d i n g t o t h e d i s t a n c e f r o m t h e t h e r e a l (f i x e d - p o i n t)
DestX and the f i r s t p i x e l (a t an i n t e g e r X) t o be drawn) * /

r e t u r n :

r e t u r n ; / * n o t h i n g t o d r a w * /

DestWid th - INT-TO_FIXED(DestXMax - DestX);
/* C a l c u l a t e s o u r c e s t e p s t h a t c o r r e s p o n d t o e a c h d e s t X s t e p (a c r o s s

SourceXStep - FixedDiv(RightEdge->SourceX - SourceX. DestWidth);
SourceYStep - FixedDiv(RightEdge->SourceY - SourceY, DestWidth);

t h e s c a n l i n e) * /

/*
i f

1
I*
i f

1
/*

C l i p r i g h t edge i f necessary * /
(DestXMax > Cl ipMaxX) I
DestXMax - ClipMaxX:

C l i p l e f t edge i f necssary * /
(DestX < C l i p M i n X) {
SourceX +- SourceXStep * (C l ipMinX - Des tX) ;
SourceY +- SourceYStep * (C l ipMinX - Des tX) ;
DestX - Cl ipMinX;

Scan ac ross t he des t i na t i on scan l i ne , upda t ing t he sou rce image
p o s i t i o n a c c o r d i n g l y *I

f o r (; DestX<DestXMax; DestX++) I
/* Get c u r r e n t l y mapped p i xe l ou t o f image and d raw i t t o s c r e e n * /
Wr i teP ixe lX(DestX. Des tY.

GET-IMAGE-PIXEL(TexMapBits. TexMapWidth.
FIXED-TO-INT(SourceX). FIXED_TO-INT(SourceY))) ;

1058 Chapter 56

I* P o i n t t o t h e n e x t source p i x e l * I
SourceX +- SourceXStep:
SourceY +- SourceYStep:

1
1

No matter how you slice it, DDA texture mapping beats boring, single-color poly-
gons nine ways to Sunday. The big downside is that it’s much slower than a normal
polygon fill: move the ball close to the screen in DEMO1, and watch things slow
down when one of those big texture maps comes around. Of course, that’s partly
because the code is all in C; some well-chosen optimizations would work wonders. In
the next chapter we’ll discuss texture mapping further, crank up the speed of our
texture mapper, and attend to some rough spots that remain in the DDA texture
mapping implementation, most notably in the area of exactly which texture pixels
map to which destination pixels as a polygon rotates.
And, in case you’re curious, yes, there is a bear in DEMO1. I wouldn’t say he looks
much like a Pooh-type bear, but he’s a bear nonetheless. He does tend to look a little
startled when you flip the ball around so that he’s zipping by on his head, but, heck,
you would too in the same situation. And remember, when you buy the next VGA
megahit, Bears in Space, you saw it here first.

Pooh and the Space Station 1059

	previous:
	home:
	next:

