
chapter 57

10,000 freshly
sheared sheep on the
screen

le of Experience in Implementing
Mapping

ning how to shear a sheep. Among other
the importance of selecting the proper comb for
who holds the world’s record for sheep sheared in
serves), and discovered, Lord help me, the many
Zealand Sheep Shearing Board improves the a p
ry year. The fellow giving the presentation did his
n’t very interesting. If you have children, you’ll

f you don’t, there’s no use explaining.
one thing that stuck with me, although it may

not sound particularly profound. (Actually, it sounds pretty silly, but bear with me.)
He said, ‘You don’t get really good at sheep shearing for 10 years, or 10,000 sheep.”
I’ll buy that. In fact, to extend that morsel of wisdom to the greater, non-ovine-cen-
tric universe, it actually takes a good chunk of experience before you get good at
anything worthwhile-especially graphics, for a couple of reasons. First, performance
matters a lot in graphics, and performance programming is largely a matter of expe-
rience. You can’t speed up PC graphics simply by looking in a book for a better
algorithm; you have to understand the code C compilers generate, assembly lan-
guage optimization, VGA hardware, and the performance implications of various
graphics-programming approaches and algorithms. Second, computer graphics is a

Fast,

things, I

1063

matter of illusion, of convincing the eye to see what you want it to see, and that’s very
much a black art based on experience.

Visual Quality: A Black Hole .. . Er, Art
Pleasing the eye with realtime computer animation is something less than a science,
at least at the PC level, where there’s a limited color palette and no time for
antialiasing; in fact, sometimes it can be more than a little frustrating. As you may
recall, in the previous chapter I implemented texture mapping in X-Sharp. There
was plenty of experience involved there, some of which I didn’t mention. My first
implementation was disappointing; the texture maps shimmied and sheared badly,
like a loosely affiliated flock of pixels, each marching to its own drummer. Then, I
added a control key to speed up the rotation; what a difference! The aliasing prob-
lems were still there, but with the faster rotation, the pixels moved too quickly for
the eye to pick up on the aliasing; the rotating texture maps, and the rotating ball as
a whole, crossed the threshold into being accepted by the eye as a viewed object,
rather than simply a collection of pixels.
The obvious lesson here is that adequate speed is important to convincing anima-
tion. There’s another, less obvious side to this lesson, though. I’d been running the
texture-mapping demo on a 20 MHz 386 with a slow VGA when I discovered the
beneficial effects of greater animation speed. When, some time later, I ran the demo
on a 33 MHz 486 with a fast VGA, I found that the faster rotation was too fast! The
ball spun so rapidly that the eye couldn’t blend successive images together into con-
tinuous motion, much like watching a badly flickering movie.

So the second lesson is that either too little or too much speed can destroy the 1 illusion. Unless you ’re antialiasing, you need to tune the shifting ofyour images so
that they ’re in the “sweet spot” of apparent motion, in which the eye is willing to
ignore the jumping and aliasing, and blend the images together into continuous
motion. Only experience can give you a feel for that sweet spot.

Fixed-point Arithmetic, Redux
In the previous chapter I added texture mapping to X-Sharp, but lacked space to
explain some of its finer points. I’ll pick up the thread now and cover some of those
points here, and discuss the visual and performance enhancements that previous
chapter’s code needed-and which are now present in the version of X-Sharp in this
chapter’s subdirectory on the CD-ROM.
Back in Chapter 38, I spent a good bit of time explaining exactly which pixels were
inside a polygon and which were outside, and how to draw those pixels accordingly.
This was important, I said, because only with a precise, consistent way of defining
inside and outside would it be possible to draw adjacent polygons without either
overlap or gaps between them.

1064 Chapter 57

As a corollary, I added that only an all-integer, edge-stepping approach would do for
polygon filling. Fixed-point arithmetic, although alluring for speed and ease of use, would
be unacceptable because round-off error would result in imprecise pixel placement.
More than a year then passed between the time I wrote that statement and the time
I implemented X-Sharp’s texture mapper, during which time my long-term memory
apparently suffered at least partial failure. When I went to implement texture mapping
for the previous chapter, I decided that since transformed destination vertices can
fall at fractional pixel locations, the cleanest way to do the texture mapping would be
to use fxed-point coordinates for both the source texture and the destination screen
polygon. That way, there would be a minimum of distortion as the polygon rotated
and moved. Theoretically, that made sense; but there was one small problem: gaps
between polygons.
Yes, folks, I had ignored the voice of experience (my own voice, at that) at my own
peril. You can be assured I will not forget this particular lesson again: Fixed-point
arithmetic is not precise. That’s not to say that it’s impossible to use fixed-point for
drawing polygons; if all adjacent edges share common start and end vertices and
common edges are always stepped in the same direction, all polygons should share
the same fixed-point imprecision, and edges should fit properly (although polygons
may not include exactly the right pixels). What you absolutely cannot do is mix
fixed-point and all-integer polygon-filling approaches when drawing, as shown in
Figure 57.1. Consequently, I ended up using an all-integer approach in X-Sharp for
stepping through the destination polygon. However, I kept the fixed-point approach,
which is faster and much simpler, for stepping through the source.
Why was it all right to mix approaches in this case? Precise pixel placement only
matters when drawing; otherwise, we can get gaps, which are very visible. When se-
lecting a pixel to copy from the source texture, however, the worst that happens is
that we pick the source pixel next to the one we really want, causing the mapped
texture to appear to have shifted by one pixel at the corresponding destination pixel;
given all the aliasing and shearing already going on in the texture-mapping process,
a one-pixel mapping error is insignificant.
Experience again: It’s the difference between knowing which flaws (like small tex-
ture shifts) can reasonably be ignored, and which (like those that produce gaps
between polygons) must be avoided at all costs.

Texture Mapping: Orientation Independence
The double-DDA texture-mapping code presented in the previous chapter worked
adequately, but there were two things about it that left me less than satisfied. One flaw
was performance; I’ll address that shortly. The other flaw was the way textures shifted
noticeably as the orientations of the polygons onto which they were mapped changed.
The previous chapter’s code followed the standard polygon inside/outside rule for
determining which pixels in the source texture map were to be mapped: Pixels that

10,000 Freshly Sheared Sheep on the Screen 1 065

Missed pixels (gaps)

Edge start vertex

Polygon scanned with
fixed-point approach

Polygon scanned with
all-integer approach

Edge as scanned by precise,
all-integer approach ’ Ed \Edge as scanned by

ge end Vertex fixed-point approach

Gaps caused by mixingjixed-point and all-integer math.
Figure 57.1

mapped exactly to the left and top destination edges were considered to be inside, and
pixels that mapped exactly to the right and bottom destination edges were considered to
be outside. That’s fine for filling polygons, but when copying texture maps, it causes
different edges of the texture map to be omitted, depending on the destination
orientation, because different edges of the texture map correspond to the right and
bottom destination edges, depending on the current rotation. Also, the previous
chapter’s code truncated to get integer source coordinates. This, together with the
orientation problem, meant that when a texture turned upside down, it slowed one
new row and one new column of pixels from the next row and column of the texture
map. This asymmetry was quite visible, and not at all the desired effect.
Listing 57.1 is one solution to these problems. This code, which replaces the equiva-
lently named function presented in the previous chapter (and, of course, is present
in the X-Sharp archive in this chapter’s subdirectory of the listings disk), makes no
attempt to follow the standard polygon inside/outside rules when mapping the source.
Instead, it advances a half-step into the texture map before drawing the first pixel, so
pixels along all edges are half included. Rounding rather than truncation to texture-
map coordinates is also performed. The result is that the texture map stays pretty
much centered within the destination polygon as the destination rotates, with a much-
reduced level of orientation-dependent asymmetry.

1066 Chapter 57

LISTING 57.1 157- 1 .C
I* T e x t u r e - m a p - d r a w t h e s c a n l i n e b e t w e e n t w o e d g e s . U s e s a p p r o a c h o f

p r e - s t e p p i n g 112 p i x e l i n t o t h e s o u r c e i m a g e a n d r o u n d i n g t o t h e n e a r e s t
s o u r c e p i x e l a t e a c h s t e p , s o t h a t t e x t u r e maps will appear
r e a s o n a b l y s i m i l a r a t a l l a n g l e s . * I

void ScanOutLine(EdgeScan * LeftEdge. EdgeScan * Righ tEdge)

F i xedpo in t SourceX;
F i xedpo in t SourceY:
i n t DestX - Lef tEdge->DestX;
i n t DestXMax = Righ tEdge->DestX;
F i x e d p o i n t D e s t W i d t h :
F i xedpo in t SourceStepX. SourceStepY:

I* N o t h i n g t o d o i f f u l l y X c l i p p e d * I
i f ((DestXMax <- C l i p M i n X) I I (DestX >- C l ipMaxX)) {

1

i f ((DestXMax - DestX) <= 0) {

1
SourceX = Lef tEdge->SourceX:
SourceY = Lef tEdge->SourceY:

I* W i d t h o f d e s t i n a t i o n s c a n l i n e , f o r s c a l i n g . N o t e : b e c a u s e t h i s i s a n
i n t e g e r - b a s e d s c a l i n g , i t can have a t o t a l e r r o r o f as much as n e a r l y
one p i x e l . F o r m o r e p r e c i s e s c a l i n g , a l s o m a i n t a i n a f i x e d - p o i n t DestX
i n each edge, and use i t f o r s c a l i n g . I f t h i s i s done, i t will a l s o
be necessary t o n u d g e t h e s o u r c e s t a r t c o o r d i n a t e s t o t h e r i g h t b y an
a m o u n t c o r r e s p o n d i n g t o t h e d i s t a n c e f r o m t h e t h e r e a l (f i x e d - p o i n t)
DestX and t h e f i r s t p i x e l (a t an i n t e g e r X) t o be drawn). *I

r e t u r n :

r e t u r n : I* n o t h i n g t o d r a w *I

DestWid th = INTCTOCFIXED(OestXMax - Des tX) :

I* C a l c u l a t e s o u r c e s t e p s t h a t c o r r e s p o n d t o e a c h d e s t X s t e p (a c r o s s

SourceStepX - FixedDiv(RightEdge->SourceX - SourceX. DestWidth) :
SourceStepY = FixedDiv(RightEdge->SourceY - SourceY. DestWidth) :

I* Advance 112 s t e p i n t h e s t e p p i n g d i r e c t i o n , t o s p a c e s c a n n e d p i x e l s
e v e n l y b e t w e e n t h e l e f t a n d r i g h t e d g e s . (T h e r e ' s a s l i g h t i n a c c u r a c y
i n d i v i d i n g n e g a t i v e numbers by 2 b y s h i f t i n g r a t h e r t h a n d i v i d i n g ,
b u t t h e i n a c c u r a c y i s i n t h e l e a s t s i g n i f i c a n t b i t , and w e ' l l j u s t
l i v e w i t h i t .) * /

t h e s c a n l i n e) *I

SourceX +- SourceStepX >> 1:
SourceY +- SourceStepY >> 1:

I*
i f

I*
i f

I
/ *

C l i p r i g h t edge i f n e c s s a r y * /
(DestXMax > Cl ipMaxX)
DestXMax - Cl ipMaxX;

C1 i p l e f t edge i f n e c s s a r y *I
(DestX < C l i p M i n X) {
SourceX +- FixedMul(SourceStepX. INTCTOCFIXED(Cl ipMinX - O e s t X)) :
SourceY +- FixedMul(S0urceStepY. INT-TO-FIXED(C1ipMinX - D e s t X)) :
DestX - C l i p M i n X :

S c a n a c r o s s t h e d e s t i n a t i o n s c a n l i n e , u p d a t i n g t h e s o u r c e i m a g e
p o s i t i o n a c c o r d i n g l y * I

10,000 Freshly Sheared Sheep on the Screen 1 067

f o r (; DestX<DestXMax; DestX++) I
I* G e t t h e c u r r e n t l y mapped p i x e l o u t o f the image and draw it t o

Wr i teP ixe lX (Des tX . Des tY .
t h e s c r e e n *I

GET-IMAGE-PIXEL(TexMapBits. TexMapWidth,
ROUND-FIXED-TO_INT(SourceX). ROUND_FIXED_TO_INT(SourceY))) :

I* P o i n t t o t h e n e x t s o u r c e p i x e l *I
SourceX +- SourceStepX;
SourceY +- SourceStepY;

1
1

Mapping Textures across Multiple Polygons
One of the truly nifty things about double-DDA texture mapping is that it is not
limited to mapping a texture onto a single polygon. A single texture can be mapped
across any number of adjacent polygons simply by having polygons that share verti-
ces in 3-space also share vertices in the texture map. In fact, the demonstration
program DEMOl in the X-Sharp archive maps a single texture across two polygons;
this is the blue-on-green pattern that stretches across two panels of the spinning ball.
This capability makes it easy to produce polygon-based objects with complex sur-
faces (such as banding and insignia on spaceships, or even human figures). Just map
the desired texture onto the underlying polygonal framework of an object, and let
double-DDA texture mapping do the rest.

Fast Texture Mapping
Of course, there’s a problem with mapping a texture across many polygons: Texture
mapping is slow. If you run DEMOl and move the ball up close to the screen, you’ll
see that the ball slows considerably whenever a texture swings around into view. To
some extent that can’t be helped, because each pixel of a texture-mapped polygon
has to be calculated and drawn independently. Nonetheless, we can certainly im-
prove the performance of texture mapping a good deal over what I presented in the
previous chapter.
By and large, there are two keys to improving PC graphics performance. The first-
no surprise-is assembly language. The second, without which assembly language is
far less effective, is understanding exactly where the cycles go in inner loops. In our
case, that means understanding where the bottlenecks are in Listing 57.1.
Listing 57.2 is a high-performance assembly language implementation of Listing 57.1.
Apart from the conversion to assembly language, this implementation improves per-
formance by focusing on reducing inner loop bottlenecks. In fact, the whole of Listing
57.2 is nothing more than the inner loop for texture-mapped polygon drawing; List-
ing 57.2 is only the code to draw a single scan line. Most of the work in drawing a
texture-mapped polygon comes in scanning out individual lines, though, so this is
the appropriate place to optimize.

1068 Chapter 57

LISTING 57.2 157-2.ASM
: Draws a l l p i x e l s i n t h e s p e c i f i e d s c a n l i n e , w i t h t h e p i x e l c o l o r s
: t a k e n f r o m t h e s p e c i f i e d t e x t u r e map. Uses approach o f p r e - s t e p p i n g
: 1 / 2 p i x e l i n t o t h e s o u r c e i m a g e a n d r o u n d i n g t o t h e n e a r e s t s o u r c e
: p i x e l a t e a c h s t e p , s o t h a t t e x t u r e maps will a p p e a r r e a s o n a b l y s i m i l a r
: a t a l l a n g l e s . T h i s r o u t i n e i s s p e c i f i c t o 3 2 0 - p i x e l - w i d e p l a n a r
: (n o n - c h a i n 4 1 2 5 6 - c o l o r modes, such as mode X , w h i c h i s a p l a n a r
: (n o n - c h a i n 4 1 2 5 6 - c o l o r mode w i t h a r e s o l u t i o n o f 3 2 0 x 2 4 0 .
: C n e a r - c a l l a b l e a s :
: void ScanOutLine(EdgeScan * LeftEdge. EdgeScan * Righ tEdge) ;
: T e s t e d w i t h TASM 3.0.

SC- INDEX equ 03c4h
MAP-MASK equ 02h
SCREEN-SEG equ OaOOOh :segment o f d i s p l a y memory i n mode X
SCREEN-WIDTH equ 80 ; w i d t h o f s c r e e n i n b y t e s f r o m o n e s c a n l i n e

: t o t h e n e x t

; S e q u e n c e C o n t r o l l e r I n d e x
; i n d e x i n SC o f Map Mask r e g i s t e r

.model smal l

. d a t a
extrn -TexMapBits:word. -TexMapWidth:word. -DestY:word
ext rn -CurrentPageBase:word. -Cl ipMinX:word
extrn -Cl ipMinY:word. -Cl ipMaxX:word. -Cl ipMaxY:word

: D e s c r i b e s t h e c u r r e n t l o c a t i o n a n d s t e p p i n g , i n b o t h t h e s o u r c e a n d
: t h e d e s t i n a t i o n , o f a n e d g e . M i r r o r s s t r u c t u r e i n DRAWTEXP.C.
EdgeScan s t r u c
D i r e c t i on

RemainingScans
Cur ren tEnd
SourceX
SourceY
SourceStepX
SourceStepY

DestX
O e s t X I n t S t e p
D e s t X D i r e c t i o n
DestXErrTerm
DestXAdjUp
DestXAdjDown

EdgeScan ends

Parms s t r u c

Le f tEdge
RightEdge
Parms ends

dw

dw
dw
dd
dd
dd
dd

dw
dw
dw
dw
dw
dw

dw
dw
dw

?

?
?
?
?
?
?

?
?
?
?
?
?

: through edge l i s t : 1 f o r a r i g h t edge (f o rward
: t h r o u g h v e r t e x l i s t) . -1 f o r a l e f t edge (backward
: t h r o u g h v e r t e x l i s t)
: h e i g h t l e f t t o s c a n o u t i n d e s t
: v e r t e x # o f end o f c u r r e n t edge
; X l o c a t i o n i n s o u r c e f o r t h i s edge
: Y l o c a t i o n i n s o u r c e f o r t h i s edge
: X s t e p i n s o u r c e f o r Y s t e p i n d e s t o f 1
: Y s t e p i n s o u r c e f o r Y s t e p i n d e s t o f 1
: v a r i a b l e s u s e d f o r a l l - i n t e g e r B r e s e n h a m ' s - t y p e
: X s t e p p i n g t h r o u g h t h e d e s t . n e e d e d f o r p r e c i s e
: p i x e l p l a c e m e n t t o a v o i d g a p s
: c u r r e n t X l o c a t i o n i n d e s t f o r t h i s edge
: w h o l e p a r t o f d e s t X s t e p p e r s c a n - l i n e Y s t e p
: -1 o r 1 t o i n d i c a t e w h i c h way X s t e p s (l e f t / r i g h t)
: c u r r e n t e r r o r t e r m f o r d e s t X s t e p p i n g
:amount t o add t o e r r o r t e r m p e r s c a n l i n e move
:amount t o s u b t r a c t f r o m e r r o r t e r m when t h e
: e r r o r t e r m t u r n s o v e r

2 d u p (?) : r e t u r n a d d r e s s & pushed BP
? ; p o i n t e r t o EdgeScan s t r u c t u r e f o r l e f t edge
? : p o i n t e r t o EdgeScan s t r u c t u r e f o r r i g h t e d g e

; O f f s e t s f r o m BP i n s t a c k f r a m e o f l o c a l v a r i a b l e s .
1 SourceX equ - 4 : c u r r e n t X c o o r d i n a t e i n s o u r c e i m a g e
1 SourceY equ -8 : c u r r e n t Y c o o r d i n a t e i n s o u r c e i m a g e
1SourceStepX equ -12 ; X s t e p i n s o u r c e i m a g e f o r X d e s t s t e p o f 1
1SourceStepY equ - 1 6 ;Y s t e p i n s o u r c e i m a g e f o r X d e s t s t e p o f 1

10,000 Freshly Sheared Sheep on the Screen 1 069

lXAdvanceByOne equ - 1 8 ; u s e d t o s t e p s o u r c e p o i n t e r 1 p i x e l

1XBaseAdvance equ -20 ;use t o s t e p s o u r c e p o i n t e r minimum number o f

1YAdvanceByOne equ -22 ;used t o s t e p s o u r c e p o i n t e r 1 p i x e l

1YBaseAdvance equ - 2 4 ; u s e t o s t e p s o u r c e p o i n t e r m i n i m u m n u m b e r o f

LOCALLSIZE equ 24 : t o t a l s i z e o f l o c a l v a r i a b l e s

; i n c r e m e n t a l l y i n X

; p i x e l s i n c r e m e n t a l l y i n X

; i n c r e m e n t a l l y i n Y

: p i x e l s i n c r e m e n t a l l y i n Y

.code
ex t rn J i xedMu l : nea r , -F i xedD iv :nea r
a l i g n 2

jmp ScanDone
p u b l i c 3 c a n O u t L i n e
a l i g n 2

-ScanOutL ine proc near
p u s h b p ; p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; p o i n t t o o u r s t a c k f r a m e
sub sp.LOCAL-SIZE : a l l o c a t e s p a c e f o r l o c a l v a r i a b l e s
push s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
p u s h d i

mov d i . [b p l . R i g h t E d g e
mov s i , Cdi 1 .DestX
cmp s i . [- C l i p M i n X]
jl e ToScanDone ; r i g h t edge i s t o l e f t o f c l i p r e c t . so done
mov b x , [b p l . L e f t E d g e
mov dx. [bx l .OestX
cmp dx, [LC1 i pMaxXl
j g e ToScanDone ; l e f t edge i s t o r i g h t o f c l i p r e c t , s o done
s u b s i . d x ; d e s t i n a t i o n fill w i d t h
j l e ToScanDone ; n u l l o r n e g a t i v e f u l l w i d t h , s o done

mov ax.word p t r [b x l . S o u r c e X ; i n i t i a l s o u r c e X c o o r d i n a t e
mov word p t r [b p l . l S o u r c e X . a x
mov ax,word p t r [b x] . S o u r c e X + 2
mov word p t r Cbp].lSourceX+Z.ax

mov a x s w o r d p t r C b x l . S o u r c e Y ; i n i t i a l s o u r c e Y c o o r d i n a t e
mov word p t r C b p l . 1 S o u r c e Y . a ~
mov ax .word p t r [bx l .SourceY+Z
mov word p t r [b p l . l S o u r c e Y + 2 . a x

ToScanDone:

; N o t h i n g t o do i f d e s t i n a t i o n i s f u l l y X c l i p p e d .

; C a l c u l a t e s o u r c e s t e p s t h a t c o r r e s p o n d t o e a c h 1 - p i x e l d e s t i n a t i o n X s t e p
: (a c r o s s t h e d e s t i n a t i o n s c a n l i n e) .

push
sub
push
mov
sub
mov
sbb
push
push
c a l l
add
mov
mov
mov
and

s i ;push des t X w i d t h , i n f i x e d p o i n t f o r m
ax, ax
ax ;push 0 as f r a c t i o n a l p a r t o f d e s t X w i d t h
ax.word p t r [d i] . S o u r c e X
ax.word p t r [b p] . l S o u r c e X ; l o w w o r d o f s o u r c e X w i d t h
dx.word p t r [d i] . S o u r c e X + Z
dx.word p t r [b p] . l S o u r c e X + Z ; h i g h w o r d o f s o u r c e X w i d t h
dx :push source X w i d t h , i n f i x e d p o i n t f o r m
ax
- F i x e d D i v : s c a l e s o u r c e X w i d t h t o d e s t X w i d t h
s p . 8 ; c l e a r p a r a m e t e r s f r o m s t a c k
word p t r [bp] . lSourceStepX.ax ; remember source X s t e p f o r
word p t r [b p] . l S o u r c e S t e p X + 2 , d x ; 1 - p i x e l d e s t i n a t i o n X s t e p
C X . 1 ;assume source X advances non -nega t i ve
dx.dx :which way does source X advance?

1070 Chapter 57

j n s
neg
cmp
j z
i nc

SourceXNonNeg:
mov

mov

push
sub
push
mov
sub
mov
sbb
push
push
c a l l
add
mov
mov
mov
and
j n s
neg
cmp
jz
i n c

SourceYNonNeg:
mov

mov
i mu1
mov

SourceXNonNeg ;non-negat ive

a x . 0 : i s t h e w h o l e s t e p e x a c t l y a n i n t e g e r ?
SourceXNonNeg :yes
d x :no. t r u n c a t e t o i n t e g e r i n t h e d i r e c t i o n o f

c x : n e g a t i v e

: 0. b e c a u s e o t h e r w i s e w e ' l l e n d u p w i t h a
: w h o l e s t e p o f 1 - t o o - l a r g e m a g n i t u d e

Cbpl . 1 XAdvanceByOne, cx :amount t o add t o s o u r c e p o i n t e r t o

Cbpl .1XBaseAdvance.d~ :minimum amount t o add t o s o u r c e
: move by one i n X

: p o i n t e r t o advance i n X e a c h t i m e
: t h e d e s t a d v a n c e s one i n X

s i : push des t Y h e i g h t . i n f i x e d p o i n t f o r m
ax , ax
ax :push 0 as f r a c t i o n a l p a r t o f d e s t Y h e i g h t
ax.word p t r [d i l . S o u r c e Y
ax.word p t r Cbp]. lSourceY : low word o f s o u r c e Y h e i g h t
dx.word p t r Cdil.SourceY+Z
dx.word p t r [b p l . l S o u r c e Y + E : h i g h w o r d o f s o u r c e Y h e i g h t
dx :push source Y h e i g h t , i n f i x e d p o i n t f o r m
ax
- F i x e d D i v : s c a l e s o u r c e Y h e i g h t t o d e s t X w i d t h
s p . 8 : c l e a r p a r a m e t e r s f r o m s t a c k
word p t r [b p l . l S o u r c e S t e p Y . a x ;remember source Y s t e p f o r
word p t r [bp] . lSourceStepY+2,dx : 1 - p i x e l d e s t i n a t i o n X s t e p
cx.[-TexMapWidth] :assume source Y advances non -nega t i ve
dx, dx :which way does source Y advance?
SourceYNonNeg ;non-negat ive
c x : n e g a t i v e
a x . 0 : i s t h e w h o l e s t e p e x a c t l y an i n t e g e r ?
SourceYNonNeg :yes
d x : n o . t r u n c a t e t o i n t e g e r i n t h e d i r e c t i o n o f

: 0 . b e c a u s e o t h e r w i s e w e ' l l e n d u p w i t h a
: w h o l e s t e p o f 1 - t o o - l a r g e m a g n i t u d e

Cbpl . lYAdvanceBy0ne.c~ :amount t o add t o s o u r c e p o i n t e r t o

ax.[-TexMapWidthl : m i n i m u m d i s t a n c e s k i p p e d i n s o u r c e
dx : image b i tmap when Y s t e p s (i g n o r i n g
C b ~ 1 . l Y B a s e A d v a n c e . a ~ : c a r r y f r o m t h e f r a c t i o n a l D a r t)

; move by one i n Y

: Advance 112 s t e p ' i n t h e s t e p p i n g d i r e c t i o n , t o space scanned p ixe l ; even ly
: b e t w e e n t h e l e f t a n d r i g h t e d g e s . (T h e r e ' s a s l i g h t i n a c c u r a c y i n d i v i d i n g
: nega t i ve numbers by 2 b y s h i f t i n g r a t h e r t h a n d i v i d i n g , b u t t h e i n a c c u r a c y
: i s i n t h e l e a s t s i g n i f i c a n t b i t , and w e ' l l j u s t l i v e w i t h i t .)

mov ax,word p t r Cbpl . lSourceStepX
mov dx.word p t r [bp] . lSourceStepX+E
s a r d x . 1
r c r a x , l
add word p t r [b p l . l S o u r c e X . a x
adc word p t r [bp] . lSourceX+E.dx

mov ax.word p t r [bp] . lSourceStepY
mov dx.word p t r [bp] . lSourceStepY+E
s a r d x , l
r c r a x . 1
add word p t r [b p] . l S o u r c e Y . a x
adc word p t r Cbp].lSourceY+Z.dx

mov s i , [d i 1 .DestX
: C l i p r i g h t edge i f necessary .

10,000 Freshly Sheared Sheep on the Screen 1 071

cmp s i , [LC1 i pMaxX1
jl Righ tEdgeC l ipped
mov s i , [LC1 i pMaxXl

R igh tEdgeC l ipped :
; C1 i p l e f t edge i f necssa ry

mov bx.Cbp1.Lef tEdge
mov d i . [b x l . D e s t X
cmp d i , [LC1 ipMinX1
j g e L e f t E d g e C l i p p e d

; L e f t c l i p p i n g i s n e c e s s a r y ; a d v a n c e t h e s o u r c e a c c o r d i n g l y
neg
add

push
sub
push
push
push
c a l l
add
add
adc

push
sub
push

d i
d i , C-Cl i pM inX1

d i
ax.ax
ax
word p t r [b p l .
word p t r [b p l .
- F i xedMul

word p t r [b p l .
word p t r [b p l .

d i
ax, ax
ax

SP.8
1
1

;C l i pM inX - DestX
; f i r s t . advance the source i n X
;push Cl ipMinX - DestX. i n f i x e d p o i n t f o r m

;push 0 as f r a c t i o n a l p a r t o f C l i p M i n X - D e s t X
SourceStepX+E
SourceStepX

; t o t a l s o u r c e X s t e p p i n g i n c l i p p e d a r e a
; c l e a r p a r a m e t e r s f r o m s t a c k

SourceX.ax ; s tep t he sou rce X p a s t c l i p p i n g
SourceX+2,dx

;now advance the source i n Y
;push Cl ipMinX - DestX. i n f i x e d p o i n t f o r m

;push 0 as f r a c t i o n a l p a r t o f C l i p M i n X - D e s t X
push word p t r Cbp] . lSourceStepY+2
push word p t r [b p l . l S o u r c e S t e p Y
c a l l - F i x e d M u l ; t o t a l s o u r c e Y s t e p p i n g i n c l i p p e d a r e a
a d d s p . 8 ; c l e a r p a r a m e t e r s f r o m s t a c k
add word p t r [b p] . l S o u r c e Y . a x : s t e p t h e s o u r c e Y p a s t c l i p p i n g
adc word p t r [b p l . l S o u r c e Y + Z . d x
mov d i , [LC1 i pMi nX1 ; s t a r t X c o o r d i n a t e i n d e s t a f t e r c l i p p i n g

Le f tEdgeCl ipped:
: C a l c u l a t e a c t u a l c l i p p e d d e s t i n a t i o n d r a w i n g w i d t h .

; S c a n a c r o s s t h e d e s t i n a t i o n s c a n l i n e , u p d a t i n g t h e s o u r c e i m a g e p o s i t i o n
; a c c o r d i n g l y .
: P o i n t t o t h e i n i t i a l s o u r c e i m a g e p i x e l , a d d i n g 0 .5 t o b o t h X and Y s o t h a t
; we c a n t r u n c a t e t o i n t e g e r s f r o m now on b u t e f f e c t i v e l y g e t r o u n d i n g .

sub s i , d i

add word p t r Cbpl.1SourceY.8000h ;add 0.5
mov ax.word p t r C b p] . l S o u r c e Y + 2
adc ax.0
mu1 [L T e x M a p W i d t h l : i n i t i a l s c a n l i n e i n s o u r c e i m a g e
add word p t r [bp l . lSourceX.8000h ;add 0 .5
mov b x . w o r d p t r [b p] . l S o u r c e X + E ; o f f s e t i n t o s o u r c e s c a n l i n e
a d c b x . a x ; i n i t i a l s o u r c e o f f s e t i n s o u r c e i m a g e
add bx, [LTexMapBi t s l ;DS:BX p o i n t s t o t h e i n i t i a l i m a g e p i x e l

; P o i n t t o i n i t i a l d e s t i n a t i o n p i x e l .
mov ax.SCREEN_SEG
mov es ,ax
mov ax,SCREENLWIDTH
mu1 [LDestY 1
mov c x . d i
s h r d i . l
s h r d i , l
add d i ,ax
add d i , [-CurrentPageBasel

; o f f s e t o f i n i t i a l d e s t s c a n l i n e
; i n i t i a l d e s t i n a t i o n X

;X/4 - o f f s e t o f p i x e l i n s c a n l i n e
: o f f s e t o f p i x e l i n page
; o f f s e t o f p i x e l i n d i s p l a y memory
; E S : D I now p o i n t s t o t h e f i r s t d e s t i n a t i o n p i x e l

1072 Chapter 57

and c l , O l l b ;CL = p i x e l ' s p l a n e
mov a1 ,MAP_MASK
mov dx , SC-INDEX
o u t d x . a l ; p o i n t t h e SC I n d e x r e g i s t e r t o t h e Map Mask
mov a l . 1 l h :one p l a n e b i t i n e a c h n i b b l e , s o w e ' l l g e t c a r r y

s h l a1 . c l : s e t t h e b i t f o r t h e f i r s t p i x e l ' s p l a n e t o 1
: a u t o m a t i c a l l y when g o i n g f r o m p l a n e 3 t o p l a n e 0

; If Source X s t e p i s n e g a t i v e , c h a n g e o v e r t o w o r k i n g w i t h n o n - n e g a t i v e
: v a l u e s .

cmp word p t r [bpl.lXAdvanceByOne,O
jge SXStepSet
neg word p t r [b p l . l S o u r c e S t e p X
n o t w o r d p t r C b p l . l S o u r c e X

SXStepSet:

: v a l u e s .
; I f s o u r c e Y s t e p i s n e g a t i v e , c h a n g e o v e r t o w o r k i n g w i t h n o n - n e g a t i v e

cmp word p t r Cbpl.lYAdvanceByOne,O
jge SYStepSet
neg word p t r [b p l . l S o u r c e S t e p Y
n o t w o r d p t r [b p l . l S o u r c e Y

SYStepSet:
: A t t h i s p o i n t :

AL = i n i t i a l p i x e l ' s p l a n e mask
BX - p o i n t e r t o i n i t i a l i m a g e p i x e l
SI - # o f p i x e l s t o fill
DI - p o i n t e r t o i n i t i a l d e s t i n a t i o n p i x e l
mov dx.SC-INDEX+l

TexScanLoop:
: S e t t h e Map Mask f o r t h i s p i x e l ' s p l a n e . t h e n d r a w t h e p i x e l .

; p o i n t t o SC D a t a ; I n d e x p o i n t s t o Map Mask

o u t d x . a l
mov ah . [bx] : ge t image p i xe l
mov e s : [d i l . a h ; s e t i m a g e p i x e l

add bx.[bp]. lXBaseAdvance ;advance the minimum I o f p i x e l s i n X
mov cx.word p t r [b p l . l S o u r c e S t e p X
add word p t r C b p 1 . l S o u r c e X . c ~ ; s t e p t h e s o u r c e X f r a c t i o n a l p a r t
j n c NoExtraXAdvance
add bx,[bp].1XAdvanceByOne

; d i d n ' t t u r n o v e r : no ex t ra advance
; d i d t u r n o v e r ; a d v a n c e X one e x t r a

add bx. [bpl . lYBaseAdvance :advance the minimum # o f p i x e l s i n Y
mov cx.word p t r [b p l . l S o u r c e S t e p Y
add word p t r C b p 1 . l S o u r c e Y . c ~ ; s t e p t h e s o u r c e Y f r a c t i o n a l p a r t
j n c NoExtraYAdvance
add bx. [bpl . lYAdvanceByOne

; d i d n ' t t u r n o v e r ; n o e x t r a a d v a n c e
; d i d t u r n o v e r ; a d v a n c e Y one e x t r a

; P o i n t t o t h e n e x t s o u r c e p i x e l .

NoExtraXAdvance:

NoExtraYAdvance:
: P o i n t t o t h e n e x t d e s t i n a t i o n p i x e l , b y c y c l i n g t o t h e n e x t p l a n e , a n d
: a d v a n c i n g t o t h e n e x t a d d r e s s if t h e p l a n e w r a p s f r o m 3 t o 0.

r o l a l . 1
a d c d i . 0

dec s i
j n z TexScanLoop

pop d i
pop s i
mov s p . b p ; d e a l l o c a t e l o c a l v a r i a b l e s

r e t
- ScanOut L i ne endp

end

; C o n t i n u e i f t h e r e a r e a n y m o r e d e s t p i x e l s t o d r a w .

ScanDone:
: r e s t o r e c a l l e r ' s r e g i s t e r v a r i a b l e s

POP b p ; r e s t o r e c a l l e r ' s s t a c k f r a m e

10,000 Freshly Sheared Sheep on the Screen 1 073

Within Listing 57.2, all the important optimization is in the loop that draws across
each destination scan line, near the end of the listing. One optimization is elimina-
tion of the call to the set-pixel routine used to draw each pixel in Listing 57.1. Function
calls are expensive operations, to be avoided when performance matters. Also, al-
though Mode X (the undocumented 320x240 256-color VGA mode X-Sharp runs
in) doesn’t lend itself well to pixel-oriented operations like line drawing or texture
mapping, t,he inner loop has been set up to minimize Mode X’s overhead. A rotating
plane mask is maintained in AL, with DX pointing to the Map Mask register; thus,
only a rotate and an OUT are required to select the plane to which to write, cycling
from plane 0 through plane 3 and wrapping back to 0. Better yet, because we know
that we’re simply stepping horizontally across the destination scan line, we can use a
clever optimization to both step the destination and reduce the overhead of main-
taining the mask. Two copies of the current plane mask are maintained, one in each
nibble ofAL. (The Map Mask register pays attention only to the lower nibble.) Then,
when one copy rotates out of the lower nibble, the other copy rotates into the lower
nibble and is ready to be used. This approach eliminates the need to test for the
mask wrapping from plane 3 to plane 0, all the more so because a carry is generated
when wrapping occurs, and that carry can be added to DI to advance the screen
pointer. (Check out the next chapter, however, to see the best Map Mask optimiza-
tion of all-setting it once and leaving it unchanged.)
In all, the overhead of drawing each pixel is reduced from a call to the set-pixel
routine and full calculation of the screen address and plane mask to five instructions
and no branches. This is an excellent example of converting full, from-scratch calcu-
lations to incremental processing, whereby only information that has changed since
the last operation (the plane mask moving one pixel, for example) is recalculated.
Incremental processing and knowing where the cycles go are both important in the
final optimization in Listing 57.2, speeding up the retrieval of pixels from the tex-
ture map. This operation looks very efficient in Listing 57.1, consisting of only two
adds and the macro GET- IMAGE-PIXEL. However, those adds are fixed-point adds,
so they take four instructions apiece, and the macro hides not only conversion from
fixed-point to integer, but also a time-consuming multiplication. Incremental ap-
proaches are excellent at avoiding multiplication, because cumulative additions can
often replace multiplication. That’s the case with stepping through the source tex-
ture in Listing 57.2; ten instructions, with a maximum of two branches, replace all
the texture calculations of Listing 57.1. Listing 57.2 simply detects when the frac-
tional part of the source x or y coordinate turns over and advances the source texture
pointer accordingly.
As you might expect, all this optimization is pretty hard to implement, and makes
Listing 57.2 much more complicated than Listing 57.1. Is it worth the trouble? In-
deed it is. Listing 57.2 is more than twice as fast as Listing 57.1, and the difference is
very noticeable when large, texture-mapped areas are animated. Whether more than

1074 Chapter 57

doubling performance is significant is a matter of opinion, I suppose, but imagine
that you’re in William Gibson’s Neuromancer, trying to crack a corporate database.
Which texture-mapping routine would you rather have interfacing you to Cyberspace?
I’m always interested in getting your feedback on and hearing about potential im-
provements to X-Sharp. Contact me through the publisher. There is no truth to the
rumor that I can be reached under the alias “sheep-shearer,” at least not for another
9,999 sheep.

10,000 Freshly Sheared Sheep on the Screen 1 075

	previous:
	home:
	next:

