
chapter 59

the idea of bsp trees

1097

The name was there in my mind, somewhere; I could feel the shape of it, in that
same back storeroom, if only I could figure out how to retrieve it.
1 poked and worried at that memory, trying to get it to come to the surface. I concen-
trated on it as hard as I could, and even started going through the alphabet one
letter at a time, trying to remember if her name started with each letter. After 15
minutes, I was wide awake and totally frustrated. I was also farther than ever from
answering the question; all the focusing on the memory was beginning to blur the
original imprint.
At this point, I consciously relaxed and made myself think about something com-
pletely different. Every time my mind returned to the mystery girl, I gently shifted it
to something else. After a while, I began to drift off to sleep, and as I did a connec-
tion was made, and a name popped, unbidden, into my mind.
Wendy Tucker.
There are many problems that are amenable to the straight-ahead, purely conscious
sort of approach that I first tried to use to retrieve Wendy’s name. Writing code
(once it’s designed) is often like that, as are some sorts of debugging, technical writ-
ing, and balancing your checkbook. I personally find these left-brain activities to be
very appealing because they’re finite and controllable; when I start one, I know 1’11
be able to deal with whatever comes up and make good progress, just by plowing
along. Inspiration and intuitive leaps are sometimes useful, but not required.
The problem is, though, that neither you nor I will ever do anything great without
inspiration and intuitive leaps, and especially not without stepping away from what’s
known and venturing into territories beyond. The way to do that is not by trying harder
but, paradoxically, by q n g less hard, stepping back, and giving your right brain room to
work, then listening for and nurturing whatever comes of that. On a small scale,
that’s how I remembered Wendy’s name, and on a larger scale, that’s how program-
mers come up with products that are more than me-too, checklist-oriented software.
Which, for a couple of reasons, brings us neatly to this chapter’s topic, Binary Space
Partitioning (BSP) trees. First, games are probably the sort of software in which the
right-brain element is most important-blockbuster games are almost always break-
throughs in one way or another-and some very successful games use BSP trees,
most notably id Software’s megahit DOOM. Second, BSP trees aren’t intuitively easy
to grasp, and considerable ingenuity and inventiveness is required to get the most
from them.
Before we begin, I’d like to thank John Carmack, the technical wizard behind DOOM,
for generously sharing his knowledge of BSP trees with me.

BSP Trees
A BSP tree is, at heart, nothing more than a tree that subdivides space in order to
isolate features of interest. Each node of a BSP tree splits an area or a volume (in 2-D or

1098 Chapter 59

3-D, respectively) into two parts along a line or a plane; thus the name “Binary Space
Partitioning.” The subdivision is hierarchical; the root node splits the world into two
subspaces, then each of the root’s two children splits one of those two subspaces into
two more parts. This continues with each subspace being further subdivided, until
each component of interest (each line segment or polygon, for example) has been
assigned its own unique subspace. This is, admittedly, a pretty abstract description,
but the workings of BSP trees will become clearer shortly; it may help to glance
ahead to this chapter’s figures.
Building a tree that subdivides space doesn’t sound particularly profound, but there’s
a lot that can be done with such a structure. BSP trees can be used to represent
shapes, and operating on those shapes is a simple matter of combining trees as needed;
this makes BSP trees a powerful way to implement Constructive Solid Geometry
(CSG). BSP trees can also be used for hit testing, line-of-sight determination, and
collision detection.

Visibility Determination
For the time being, I’m going to discuss only one of the many uses of BSP trees: The
ability of a BSP tree to allow you to traverse a set of line segments or polygons in
back-to-front or front-to-back order as seen from any arbitrary viewpoint. This sort of
traversal can be very helpful in determining which parts of each line segment or
polygon are visible and which are occluded from the current viewpoint in a 3-D
scene. Thus, a BSP tree makes possible an efficient implementation of the painter’s
algorithm, whereby polygons are drawn in back-to-front order, with closer polygons
overwriting more distant ones that overlap, as shown in Figure 59.1. (The line seg-
ments in Figure 1 (a) and in other figures in this chapter, represent vertical walls,
viewed from directly above.) Alternatively, visibility determination can be performed
by front-to-back traversal working in conjunction with some method for remember-
ing which pixels have already been drawn. The latter approach is more complex, but
has the potential benefit of allowing you to early-out from traversal of the scene
database when all the pixels on the screen have been drawn.
Back-to-front or front-to-back traversal in itself wouldn’t be so impressive-there are
many ways to do that-were it not for one additional detail: The traversal can always
be performed in linear time, as we’ll see later on. For instance, you can traverse, a
polygon list back-to-front from any viewpoint simply by walking through the corre-
sponding BSP tree once, visiting each node one and only one time, and performing
only one relatively inexpensive test at each node.
It’s hard to get cheaper sorting than linear time, and BSP-based rendering stacks up
well against alternatives such as z-buffering, octrees, z-scan sorting, and polygon sort-
ing. Better yet, a scene database represented as a BSP tree can be clipped to the view
pyramid very efficiently; huge chunks of a BSP tree can be lopped off when clipping
to the view pyramid, because if the entire area or volume of a node lies entirely

The Idea of BSP Trees 1099

B
/
C
V

A. Walls viewed from above

B. After drawing far wall

C. After drawing next farthest wall

-
D. After drawing nearest wall

The painter 5. algorithm.
Figure 59.1

outside the view volume, then all nodes and leaves that are children of that node
must likewise be outside the view volume, for reasons that will become clear as we
delve into the workings of BSP trees.

Limitations of BSP Trees
Powerful as they are, BSP trees aren’t perfect. By far the greatest limitation of BSP
trees is that they’re time-consuming to build, enough so that, for all practical pur-
poses, BSP trees must be precalculated, and cannot be built dynamically at runtime.
In fact, a BSP-tree compiler that attempts to perform some optimization (limiting
the number of surfaces that need to be split, for example) can easily take minutes or
even hours to process large world databases.
A fixed world database is fine for walkthrough or flythrough applications (where the
viewpoint moves through a static scene), but not much use for games or virtual real-
ity, where objects constantly move relative to one another. Consequently, various
workarounds have been developed to allow moving objects to appear in BSP tree-
based scenes. DOOM, for example, uses 2-D sprites mixed into BSP-based 3-D scenes;
note, though, that this approach requires maintaining z information so that sprites
can be drawn and occluded properly. Alternatively, movable objects could be repre-
sented as separate BSP trees and merged anew into the world BSP tree with each
move. Dynamic merging may or may not be fast enough, depending on the scene,
but merging BSP trees tends to be quicker than building them, because the BSP
trees being merged are already spatially sorted.

1 100 Chapter 59

Another possibility would be to generate a per-pixel z-buffer for each frame as it’s
rendered, to allow dynamically changing objects to be drawn into the BSP-based
world. In this scheme, the BSP tree would allow fast traversal and clipping of the
complex, static world, and the z-buffer would handle the relatively localized visibility
determination involving moving objects. The drawback of this is the need for a
memory-hungry z-buffer; a typical 640x480 z-buffer requires a fairly appalling 600K,
with equally appalling cache-miss implications for performance.
Yet another possibility would be to build the world so that each dynamic object falls
entirely within a single subspace of the static BSP tree, rather than straddling split-
ting lines or planes. In this case, dynamic objects can be treated as points, which are
then just sorted into the BSP tree on the fly as they move.
The only other drawbacks of BSP trees that I know of are the memory required to
store the tree, which amounts to a few pointers per node, and the relative complex-
ity of debugging BSP-tree compilation and usage; debugging a large data set being
processed by recursive code (which BSP code tends to be) can be quite a challenge.
Tools like the BSP compiler I’ll present in the next chapter, which visually depicts
the process of spatial subdivision as a BSP tree is constructed,
BSPdebugging:

Building a BSP Tree
Now that we know a good bit about what a BSP tree is, how it

help a great dealwith

telps in visible surface l-
determination, and what its strengths and weaknesses are, let’s take a look at how a
BSP tree actually works to provide front-to-back or back-to-front ordering. This
chapter’s discussion will be at a conceptual level, with plenty of figures; in the next
chapter we’ll get into mechanisms and implementation details.
I’m going to discuss only 2-D BSP trees from here on out, because they’re much
easier to draw and to grasp than their 3-D counterparts. Don’t worry, though; the
principles of 2-D BSP trees using line segments generalize directly to 3-D BSP trees
using polygons. Also, 2-D BSP trees are quite powerful in their own right, as evi-
denced by DOOM, which is built around 2-D BSP trees.
First, let’s construct a simple BSP tree. Figure 59.2 shows a set of four lines that will
constitute our sample world. I’ll refer to these as walls, because that’s one easily-
visualized context in which a 2-D BSP tree would be useful in a game. Think of Figure
59.2 as depicting vertical walls viewed from directly above, so they’re lines for the
purpose of the BSP tree. Note that each wall has a front side, denoted by a normal
(perpendicular) vector, and a back side. To make a BSP tree for this sample set, we
need to split the world in two, then each part into two again, and so on, until each
wall resides in its own unique subspace. An obvious question, then, is how should we
carve up the world of Figure 59.2?

The Idea of BSP Trees 1 1 01

A sample set of walls, viewed from above.
Figure 59.2

There are infinitely valid ways to carve up Figure 59.2, but the simplest is just to carve
along the lines of the walls themselves, with each node containing one wall. This is
not necessarily optimal, in the sense of producing the smallest tree, but it has the
virtue of generating the splitting lines without expensive analysis. It also saves on
data storage, because the data for the walls can do double duty in describing the
splitting lines as well. (Putting one wall on each splitting line doesn’t actually create
a unique subspace for each wall, but it does create a unique subspace boundary for
each wall; as we’ll see, that spatial organization provides for the same unambiguous
visibility ordering as a unique subspace would.)
Creating a BSP tree is a recursive process, so we’ll perform the h t split and go from there.
Figure 59.3 shows the world carved along the line of wall C into two parts: walls that are
in front ofwall C, and walls that are behind. (Any of the walls would have been an equally

front

BSP tree

child

front lines back lines

child

1

J

Initial split along the line of wall C.
Figure 59.3

1 102 Chapter 59

valid choice for the initial split; we'll return to the issue of choosing splitting walls in the
next chapter.) This splitting into front and back is the essential dualism of BSP trees.
Next, in Figure 59.4, the front subspace of wall C is split by wall D. This is the only
wall in that subspace, so we're done with wall C's front subspace.
Figure 59.5 shows the back subspace of wall C being split by wall B. There's a differ-
ence here, though: Wall A straddles the splitting line generated from wall B. Does
wall A belong in the front or back subspace of wall B?

Split of wall C j . front subspace along the line of wall D.
Figure 59.4

BSP tree

fronl

Split of wall C's buck subspace along the line of wall B.
Figure 59.5

The Idea of BSP Trees 1 103

Both, actually. Wall A gets split into two pieces, which I’ll call wall A and wall E; each
piece is assigned to the appropriate subspace and treated as a separate wall. As shown
in Figure 59.6, each of the split pieces then has a subspace to itself, and each be-
comes a leaf of the tree. The BSP tree is now complete.

Visibility Ordering
Now that we’ve successfully built a BSP tree, you might justifiably be a little puzzled
as to how any of this helps with visibility ordering. The answer is that each BSP node
can definitively determine which of its child trees is nearer and which is farther from
any and all viewpoints; applied throughout the tree, this principle makes it possible
to establish visibility ordering for all the line segments or planes in a BSP tree, no
matter what the viewing angle.
Consider the world of Figure 59.2 viewed from an arbitrary angle, as shown in Figure
59.7. The viewpoint is in front of wall C; this tells us that all walls belonging to the
front tree that descends from wall C are nearer along every ray from the viewpoint
than wall C is (that is, they can’t be occluded by wall C) . All the walls in wall C’s back
tree are likewise farther away than wall C along any ray. Thus, for this viewpoint, we
know for sure that if we’re using the painter’s algorithm, we want to draw all the walls
in the back tree first, then wall C, and then the walls in the front tree. If the view-
point had been on the back side of wall C, this order would have been reversed.
Of course, we need more ordering information than wall C alone can give us, but we
get that by traversing the tree recursively, making the same far-near decision at each
node. Figure 59.8 shows the painter’s algorithm (back-to-front) traversal order of
the tree for the viewpoint of Figure 59.7. At each node, we decide whether we’re

BSP tree

~ _ _ ~ ~ ”~ ~

The final BSP tree.
Figure 59.6

1 104 Chapter 59

Viewing the BSP tree from an arbitrary angle.
Figure 59.7

seeing the front or back side of that node’s wall, then visit whichever of the wall’s
children is on the far side from the viewpoint, draw the wall, and then visit the node’s
nearer child, in that order. Visiting a child is recursive, involving the same far-near
visiting order.
The key is that each BSP splitting line separates all the walls in the current subspace
into two groups relative to the viewpoint, and every single member of the farther

Note: ‘F‘ and ‘N‘ indicate the far and near children,
respectively, of each node from the viewpoint of
Figure 59.7.

Back-to-front traversal of the BSP tree as viewed in Figure 59.7.
Figure 59.8

The Idea of BSP Trees 1 1 05

group is guaranteed not to occlude every single member of the nearer. By applying
this ordering recursively, the BSP tree can be traversed to provide back-to-front or
front-to-back ordering, with each node being visited only once.
The type of tree walk used to produce front-to-back or back-to-front BSP traversal is
known as an inorderwalk. More on this very shortly; you’re also likely to find a discus-
sion of inorder walking in any good data structures book. The only special aspect of
BSP walks is that a decision has to be made at each node about which way the node’s
wall is facing relative to the viewpoint, so we know which child tree is nearer and
which is farther.
Listing 59.1 shows a function that draws a BSP tree back-to-front. The decision whether
a node’s wall is facing forward, made by WallFacingForward() in Listing 59.1, can, in
general, be made by generating a normal to the node’s wall in screenspace (perspec-
tive-corrected space as seen from the viewpoint) and checking whether the z
component of the normal is positive or negative, or by checking the sign of the dot
product of a viewspace (non-perspective corrected space as seen from the viewpoint)
normal and a ray from the viewpoint to the wall. In 2-D, the decision can be made by
enforcing the convention that when a wall is viewed from the front, the start vertex is
leftmost; then a simple screenspace comparison of the x coordinates of the left and
right vertices indicates which way the wall is facing.

listing 59.1 159-1 .C
v o i d WalkBSPTree(N0DE *pNode)
I

i f (Wal lFacingForward(pNode) {
i f (pNode->Backch i ld) {

1
Draw(pNode);
i f (p N o d e - > F r o n t c h i l d) I

I
J e l s e {

i f (p N o d e - > F r o n t c h i l d) {

1
Draw(pNode):
i f (pNode->Backch i ld) {

I

WalkBSPTree(pN0de->Backchi ld) ;

WalkBSPTree(pN0de->Frontchi ld) :

WalkBSPTree(pN0de->Frontchi ld) :

WalkBSPTree(pN0de->Backchild):

1
I

Be aware that BSP trees can often be made smaller and more efficient by detecting p collinear surfaces (like aligned wall segments) and generating only one BSP node
for each collinear set, with the collinear surfaces stored in, say, a linked list at-
tached to that node. Collinear surfacespartition space identically and can ’t occlude
one another, so it suffices to generate one splitting node for each collinear set.

1 106 Chapter 59

Inorder Walks of BSP Trees
It was implementing BSP trees that got me to thinking about inorder tree traversal.
In inorder traversal, the left subtree of each node gets visited first, then the node,
and then the right subtree. You apply this sequence recursively to each node and its
children until the entire tree has been visited, as shown in Figure 59.9. Walking a
BSP tree is basically an inorder tree walk; the only difference is that with a BSP tree
a decision is made before each descent as to which subtree to visit first, rather than
simply visiting whatever’s pointed to by the left-subtree pointer. Conceptually, how-
ever, an inorder walk is what’s used to traverse a BSP tree; from now on I’ll discuss
normal inorder walking, with the understanding that the same principles apply to
BSP trees.
As I’ve said again and again in my printed works over the years, you have to dig deep
below the surface to real4 understand something if you want to get it right, and
inorder walking turns out to be an excellent example of this. In fact, it’s such a good
example that I routinely use i t as an interview question for programmer candidates,
and, to my astonishment, not one interviewee has done a good job with this one yet.
I ask the question in two stages, and I get remarkably consistent results.
First, I ask for an implementation of a function WalkTree() that visits each node in a
passed-in tree in inorder sequence. Each candidate unhesitatingly writes something
like the perfectly good code in Listings 59.2 and 59.3 shown next.

An inorder walk of a BSP tree.
Figure 59.9

The Idea of BSP Trees 1 107

Listing 59.2 159-2.C
I / F u n c t i o n t o i n o r d e r w a l k a t r e e , u s i n g c o d e r e c u r s i o n
/ / T e s t e d w i t h 3 2 - b i t V i s u a l C++ 1.10.
Pi n c l ude < s t d l i b. h>
l i n c l ude “ t ree . h ”
e x t e r n v o i d V i s i t (N 0 D E * p N o d e) :
v o i d WalkTree(N0DE *pNode)
(

I / Make s u r e t h e t r e e i s n ’ t e m p t y
i f (pNode !- NULL)
(

/ / T r a v e r s e t h e l e f t s u b t r e e . i f t h e r e i s one
i f (p N o d e - > p L e f t C h i l d !- NULL)
I

I
I / V i s i t t h i s node
V i s i t (p N o d e) :
/ / T r a v e r s e t h e r i g h t s u b t r e e . i f t h e r e i s one
i f (pNode->pRightCh i ld !- NULL)
I

1

WalkTree(pNode->pLeftChild):

WalkTree(pNode->pRightChild);

I
1

listing 59.3 159-3.H
/ / Header f i l e TREE.H f o r t r e e - w a l k i n g c o d e .
t y p e d e f s t r u c t -NODE I

s t r u c t -NODE * p L e f t C h i l d :
s t r u c t -NODE * p R i g h t C h i l d ;

1 NODE:

Then I ask if they have any idea how to make the code faster; some don’t, but most
point out that function calls are pretty expensive. Either way, I then ask them to
rewrite the function without code recursion.
And then I sit back and squirm for a minimum of 15 minutes.
I have never had anyone write a functional data-recursion inorder walk function in
less time than that, and several people have simply never gotten the code to work at
all. Even the best of them have fumbled their way through the code, sticking in a
push here or a pop there, then working through sample scenarios in their head to
see what’s broken, programming by trial and error until the errors seem to be gone.
No one is ever sure they have it right; instead, when they can’t find any more bugs,
they look at me hopefully to see if it’s thumbs-up or thumbs-down.
And yet, a data-recursive inorder walk implementation has exactly the same flowchart
and exactly the same functionality as the code-recursive version they’ve already writ-
ten. They already have a fully functional model to follow, with all the problems solved,
but they can’t make the connection between that model and the code they’re trylng
to implement. Why is this?

1 108 Chapter 59

Know it Cold
The problem is that these people don't understand inorder walking through and
through. They understand the concepts of visiting left and right subtrees, and they
have a general picture of how traversal moves about the tree, but they do not under-
stand exactly what the code-recursive version does. If they really comprehended
everything that happens in each iteration of WalkTreeO-how each call saves the
state, and what that implies for the order in which operations are performed-they
would simply and without fuss implement code like that in Listing 59.4, working with
the code-recursive version as a model.

Listing 59.4 159-4.C
/ I F u n c t i o n t o i n o r d e r w a l k a t r e e , u s i n g d a t a r e c u r s i o n .
/ / No s t a c k o v e r f l o w t e s t i n g i s p e r f o r m e d .
/ / T e s t e d w i t h 3 2 - b i t V i s u a l C++ 1.10.
i n c l u d e < s t d l i b . h >
#i n c l ude " t r e e . h"
d e f i n e MAX-PUSHED-NODES 100
ex te rn vo id V i s i t (NO0E *pNode) :
v o i d WalkTree(NO0E *pNode)
(

NODE *NodeStack[MAX-PUSHED_NODESI:
NODE **pNodeStack;
/ / Make s u r e t h e t r e e i s n ' t e m p t y
i f (pNode !- NULL)
I

NodeStackCOl - NULL: / / push "s tack empty" va lue
pNodeStack - NodeStack + 1;
f o r (: :)
[

/ / I f the cu r ren t node has a l e f t c h i l d , push
I / t h e c u r r e n t n o d e a n d d e s c e n d t o t h e l e f t
/ / c h i l d t o s t a r t t r a v e r s i n g t h e l e f t s u b t r e e .
/ I Keep d o i n g t h i s u n t i l we come t o a node
/ / w i t h n o l e f t c h i l d ; t h a t ' s t h e n e x t node t o
I / v i s i t i n i n o r d e r sequence
w h i l e (p N o d e - > p L e f t C h i l d !- NULL)

*pNodeStack++ - pNode:
pNode - p N o d e - > p L e f t C h i l d ;

We're a t a node t h a t has no l e f t c h i l d . S O

v i s i t t h e n o d e , t h e n v i s i t t h e r i g h t
s u b t r e e i f t h e r e i s one. o r t h e l a s t -
pushed node o therw ise : repeat fo r each
popped node u n t i l one w i t h a r i g h t
s u b t r e e i s f o u n d o r we run ou t o f pushed
n o d e s (n o t e t h a t t h e l e f t s u b t r e e s o f
pushed nodes have a l ready been v is i ted. s o
t h e y ' r e e q u i v a l e n t a t t h i s p o i n t t o n o d e s
w i t h n o l e f t c h i l d r e n)

f o r (: : I
{

V i s i t (p N o d e 1 ;
I / I f the node has a r i g h t c h i l d . make
/ / t h e c h i l d t h e c u r r e n t n o d e and s t a r t

The Idea of BSP Trees 1 109

I !
/ I
/ /
/ /
/ /
i f
I

t r a v e r s i n g t h a t s u b t r e e ; o t h e r w i s e , p o p
b a c k u p t h e t r e e , v i s i t i n g nodes we
passed on the way down, u n t i l we f i n d a
node w i t h a r i g h t s u b t r e e t o t r a v e r s e
or run ou t o f pushed nodes and a re done
(pNode->pRightCh i ld !- NULL)

/ / Current node has a r i g h t c h i l d :
/ / t r a v e r s e t h e r i g h t s u b t r e e
pNode - pNode->pRightCh i ld :
b r e a k :

Pop t h e n e x t n o d e f r o m t h e s t a c k so
we can v i s i t i t and see i f it has a
r i g h t s u b t r e e t o b e t r a v e r s e d
((pNode - *-pNodeStack) - NULL)

/ I S t a c k i s empty and the current node
/ / has no r i g h t c h i l d : w e ’ r e d o n e
r e t u r n :

Take a few minutes to look over Listing 59.4 and relate it to Listing 59.2. The struc-
ture is different, but upon examination it becomes clear that both listings reflect the
same underlying model: For each node, visit the left subtree, visit the node, visit the
right subtree. And although Listing 59.4 is longer, that’s mostly because I commented
it heavily to make sure its workings are understood; there are only 13 lines that actu-
ally do anything in Listing 59.4.
Let’s look at it another way. All the code in Listing 59.2 does is say: “Here I am at a
node. First I’ll visit the left subtree if there is one, then I’ll visit this node, then I’ll
visit the right subtree if there is one. While I’m visiting the left subtree, I’ll just push
a marker on a stack that tells me to come back here when the left subtree is done. If,
after visiting a node, there are no right children to visit and nothing left on the stack,
I’m finished. The code does this at each node-and that’s allit does. That’s all List-
ing 59.4 does, too, but people tend to get tangled up in pushes and pops and while
loops when they use data recursion. When the implementation model changes to
one with which they are unfamiliar, they abandon the perfectly good model they
used before and try to rederive it in the new context by the seat of their pants.

Here S a secret when you ’re faced with a situation like this: Step back and get a 1 clear picture of what your code has to do. Omit no steps. You should build a model
that is so consistent and solid that you can instantly answer any question about
how the code should behave in any situation. For example, my intewiavees often
decide, by trial and error, that there are two distinct types of right children: Right
children visited after popping back to visit a node after the left subtree has been
visited, and right children visited after descending to a node that has no left child.

1 1 1 0 Chapter 59

This makes the traversal code a mass of special cases, each of which has to be
detected by the programmer by trying out scenarios. Worse, you can never be sure
with this approach that you 've caught all the special cases.
The alternative is to develop and apply a unlfiing model. There aren 't really two
types of right children; the rule is that all right children are visited after their
parents are visited, period. The presence or absence of a left child is irrelevant.
The possibility that a right child may be reached via different code paths depend-
ing on the presence of a left child does not afect the overall model. While this
distinction may seem trivial it is in fact crucial, because ifyou have the model
down cold, you can always tell if the implementation is correct by comparing it
with the model.

Measure and Learn
How much difference does all this fuss make, anyway? Listing 59.5 is a sample pro-
gram that builds a tree, then calls WalkTree () to walk it 1,000 times, and times how
long this takes. Using 32-bit Visual C+t 1.10 running on Windows NT, with default
optimization selected, Listing 59.5 reports that Listing 59.4 is about 20 percent faster
than Listing 59.2 on a 486/33, a reasonable return for a little code rearrangement,
especially when you consider that the speedup is diluted by calling the Visit() func-
tion and by the cache miss that happens on virtually every node access. (Listing 59.5
builds a rather unique tree, one in which every node has exactly two children. Differ-
ent sorts of trees can and do produce different performance results. Always know
what you're measuring!)

listing 59.5 159-5.C
/ / Sample program t o e x e r c i s e a n d t i m e t h e p e r f o r m a n c e of
I1 imp lemen ta t i ons o f Wal k T r e e 0 .
/ / T e s t e d w i t h 3 2 - b i t V i s u a l C++ 1.10 under Windows NT.
i n c l u d e < s t d i o . h >
inc lude <con io .h>
#i n c l u d e < s t d l i b. h>
inc lude < t ime .h>
#i n c l u d e " t r e e . h"
l o n g V i s i t c o u n t - 0;
v o i d m a i n (v o i d 1 ;
void Bui ldTree(N0DE *pNode. i n t RemainingOepth):
e x t e r n v o i d WalkTree(N0DE *pRootNode);
v o i d m a i n 0
{

NODE RootNode;
i n t i;
l o n g S t a r t T i m e ;
I / B u i l d a sample t r e e
Bu i ldTree(&RootNode. 14) ;
11 Walk t h e t r e e 1000 t imes and see how l o n g i t takes
S t a r t T i m e - time(NULL);
f o r (i - 0 : i<lOOO; i++)
(

I
WalkTree(&RootNode);

The Idea of BSP Trees 1 1 1 1

p r i n t f (" S e c o n d s e l a p s e d : % l d \ n " .
t ime(NULL) - S t a r t T i m e l :

g e t c h (1 ;
1
/ /
/ / F u n c t i o n t o add r i g h t and l e f t s u b t r e e s of t h e
/ / s p e c i f i e d d e p t h o f f t h e p a s s e d - i n node.
/ I
vo id Bu i ldTree(N0DE *pNode, i n t RemainingDepth)
r

i f (RemainingDepth - 0)
c

p N o d e - > p L e f t C h i l d - NULL;
pNode->pRightCh i ld - NULL:

3
e l s e
I

p N o d e - > p L e f t C h i l d - m a l l o c (s i z e o f (N 0 D E)) :
i f (p N o d e - > p L e f t C h i l d - NULL)
c

p r i n t f (" 0 u t o f m e m o r y \ n ") :
e x i t (1) :

3
pNode->pRightCh i ld - m a l l o c (s i z e o f (N 0 D E)) :
i f (pNode->pRightCh i ld - NULL)

p r i n t f (" 0 u t o f m e m o r y \ n ") :
e x i t (1) ;

r

1
BuildTree(pNode->pLeftChild. RemainingDepth - 1):
BuildTree(pNode->pRightChild. RemainingDepth - 1):

1
I
/ /
/ / N o d e - v i s i t i n g f u n c t i o n so WalkTreeO has something t o
/ / c a l l .
/ I
void V is i t (N0DE *pNode)
{

3
Vi s i tCount++:

Things change when maximum optimization is selected, however: The performance
of the two implementations becomes virtually identical! How can this be? Part of the
answer is that the compiler does an amazingly good job with Listing 59.2. Most im-
pressively, when compiling Listing 59.2, the compiler actually converts all right-subtree
descents from code recursion to data recursion, by simply jumping back to the left-
subtree handling code instead of recursively calling WalkTreeO. This means that
half the time Listing 59.4 has no advantage over Listing 59.2; in fact, it's at a disad-
vantage because the code that the compiler generates for handling right-subtree
descent in Listing 59.4 is somewhat inefficient, but the right-subtree code in Listing
59.2 is a marvel of code generation, atjust 3 instructions.
What's more, although left-subtree traversal is more efficient with data recursion
than with code recursion, the advantage is only four instructions, because only one

1 1 12 Chapter 59

parameter is passed and because the compiler doesn’t bother setting up an EBP-
based stack frame, instead it uses ESP to address the stack. (And, in fact, this cost
could be reduced still further by eliminating the check for a NULL pNode at all but
the top level.) There are other interesting aspects to what the compiler does with
Listings 59.2 and 59.4 but that’s enough to give you the idea. It’s worth noting that
the compiler might not do as well with code recursion in a more complex function,
and that a good assembly language implementation could probably speed up Listing
59.4 enough to make it measurably faster than Listing 59.2, but not even close to
being enough faster to be worth the effort.
The moral of this story (apart from it being a good idea to enable compiler optimiza-
tion) is:
1. Understand what you’re doing, through and through.
2. Build a complete and consistent model in your head.
3. Design from the principles that the model provides.
4. Implement the design.
5. Measure to learn what you’ve wrought.
6. Go back to step 1 and apply what you’ve just learned.

With each iteration you’ll dig deeper, learn more, and improve your ability to know
where and how to focus your design and programming efforts. For example, with
the C compilers I used five to 10 years ago, back when I learned about the relative
strengths and weaknesses of code and data recursion, and with the processors then
in use, Listing 59.4 would have blown away Listing 59.2. While doing this chapter,
I’ve learned that given current processors and compiler technology, data recursion
isn’t going to get me any big wins; and yes, that was news to me. That’s good; this
information saves me from wasted effort in the future and tells me what to concen-
trate on when I use recursion.
Assume nothing, keep digging deeper, and never stop learning and growing. The
world won’t hold still for you, but fortunately you can run fast enough to keep up if
you just keep at it.
Depths within depths indeed!

Surfing Amidst the Trees
In the next chapter, we’ll build a BSP-tree compiler, and after that, we’ll put together
a rendering system built around the BSP trees the compiler generates. If the subject
of BSP trees really grabs your fancy (as it should if you care at all about performance
graphics) there is at this writing (February 1996) a World Wide Web page on BSP
trees that you must investigate at http://www.qualia.com/bspfaq/. It’s set up in the
familiar Internet Frequently Asked Questions (FAQ) style, and is very good stuff.

The idea of BSP Trees 1 1 13

Related Reading
Foley, J., A. van Dam, S. Feiner, and J. Hughes, Computer Gaphics: Principles and Practice
(Second Edition), Addison Wesley, 1990, pp. 555-557, 675-680.
Fuchs, H., Z. Kedem, and B. Naylor, “On Visible Surface Generation by A Priori Tree
Structures,” Computer GraphicsVol. 17(3), June 1980, pp. 124133.
Gordon, D., and S. Chen, “Front-teBack Display of BSP Trees,” IEEE Computer Graphics
and Applications, September 1991, pp. 79-85.
Naylor, B., “Binary Space Partitioning Trees as an Alternative Representation of
Polytopes,” Computer Aided Design, Vol. 22(4), May 1990, pp. 250-253.

1 1 14 Chapter 59

	previous:
	home:
	next:

