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The  name was there in my mind, somewhere; I could  feel the shape of it, in that 
same back storeroom, if only I could  figure out how to  retrieve it. 
1 poked and worried at  that memory, trying to  get  it to come  to  the  surface. I concen- 
trated on it as hard as I  could, and even started  going  through  the  alphabet one 
letter  at  a time, trying to  remember if her name  started with each  letter. After 15 
minutes,  I was wide  awake and totally frustrated. I was also farther  than ever from 
answering the  question;  all  the focusing on the memory was beginning  to  blur  the 
original  imprint. 
At this  point, I consciously relaxed and made myself think  about  something com- 
pletely different. Every time my mind returned to the mystery girl, I gently shifted  it 
to  something else. After a while, I began to  drift off to  sleep, and as I did  a  connec- 
tion was made, and  a name  popped,  unbidden,  into my mind. 
Wendy  Tucker. 
There  are many problems  that are amenable to the  straight-ahead, purely conscious 
sort of approach  that I first tried to  use to  retrieve Wendy’s name. Writing code 
(once it’s designed) is often like that, as are some sorts of debugging,  technical writ- 
ing, and balancing your checkbook.  I personally find  these  left-brain activities to be 
very appealing because they’re  finite and controllable; when I start one, I know 1’11 
be able  to  deal with  whatever comes up  and make good  progress, just by plowing 
along.  Inspiration and intuitive leaps are sometimes useful, but  not  required. 
The  problem is, though,  that  neither you nor I will ever do anything  great  without 
inspiration and intuitive leaps, and especially not without  stepping away from what’s 
known and venturing into territories beyond. The way to do that is not by trying harder 
but, paradoxically, by q n g  less hard, stepping back, and giving  your right brain room to 
work, then listening for  and  nurturing whatever comes of that. On  a small scale, 
that’s how I  remembered Wendy’s name, and  on  a larger scale, that’s how program- 
mers come up with products  that  are  more  than me-too, checklist-oriented software. 
Which, for  a  couple of reasons,  brings us neatly to this chapter’s  topic, Binary Space 
Partitioning (BSP) trees. First, games are probably the  sort of  software  in  which the 
right-brain  element is most important-blockbuster games are almost always break- 
throughs  in  one way or another-and some very successful games use BSP trees, 
most notably id  Software’s megahit DOOM. Second, BSP trees  aren’t intuitively easy 
to  grasp, and considerable  ingenuity and inventiveness is required  to  get  the most 
from  them. 
Before we begin, I’d  like to  thank John Carmack, the technical wizard behind DOOM, 
for  generously  sharing his knowledge of BSP trees with me. 

BSP Trees 
A BSP tree is, at  heart,  nothing  more  than  a  tree  that subdivides space in order  to 
isolate features of interest. Each node of a BSP tree splits an area  or  a volume (in 2-D or 
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3-D, respectively) into two parts along a line or a plane;  thus  the  name “Binary  Space 
Partitioning.” The subdivision is hierarchical; the  root  node splits the world into two 
subspaces, then  each of the root’s two children splits one of those two subspaces into 
two more parts. This continues with each subspace being further subdivided, until 
each component of interest  (each line segment or polygon, for  example) has been 
assigned  its own unique subspace. This is,  admittedly, a pretty abstract description, 
but  the workings  of BSP trees will become clearer shortly; it may help to glance 
ahead to this chapter’s figures. 
Building a tree that subdivides  space doesn’t sound particularly profound,  but there’s 
a lot that  can  be done with  such a structure. BSP trees can  be used to represent 
shapes, and operating on those  shapes is a simple matter of combining trees as needed; 
this  makes BSP trees a powerful way to implement Constructive  Solid Geometry 
(CSG). BSP trees can also be used for  hit testing,  line-of-sight determination,  and 
collision detection. 

Visibility Determination 
For the time being, I’m  going to discuss  only one of the many  uses  of BSP trees: The 
ability  of a BSP tree  to allow  you  to  traverse a set of line segments or polygons in 
back-to-front or front-to-back order as seen from any arbitrary viewpoint. This sort of 
traversal can be  very helpful in determining which parts of each line segment or 
polygon are visible and which are occluded from  the  current viewpoint in a 3-D 
scene. Thus, a BSP tree makes  possible an efficient implementation of the painter’s 
algorithm, whereby  polygons are drawn  in  back-to-front order, with  closer  polygons 
overwriting more distant ones  that overlap, as shown  in  Figure 59.1. (The line seg- 
ments in Figure 1 (a)  and in other figures in this chapter,  represent vertical  walls, 
viewed from directly above.) Alternatively,  visibility determination can be  performed 
by front-to-back  traversal  working in conjunction with some method  for  remember- 
ing which  pixels  have  already been drawn. The latter  approach is more  complex,  but 
has the potential benefit of  allowing  you  to  early-out from traversal of the scene 
database when  all the pixels on  the screen have been drawn. 
Back-to-front or front-to-back  traversal  in  itself wouldn’t be so impressive-there are 
many ways to do that-were it  not for one additional detail: The traversal can always 
be  performed in linear time, as  we’ll  see later on. For instance, you  can  traverse, a 
polygon  list  back-to-front from any  viewpoint  simply by walking through  the  corre- 
sponding BSP tree  once, visiting each node  one  and only one time, and performing 
only one relatively  inexpensive  test at each  node. 
It’s hard to get  cheaper sorting than linear time, and BSP-based rendering stacks up 
well against  alternatives  such  as  z-buffering, octrees, z-scan sorting, and polygon  sort- 
ing. Better yet, a scene database represented as a BSP tree can be clipped to  the view 
pyramid  very  efficiently; huge  chunks of a BSP tree can be  lopped off when clipping 
to the view pyramid,  because if the  entire  area or volume  of a node lies entirely 
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The painter 5. algorithm. 
Figure 59.1 

outside  the view volume, then all nodes and leaves that  are  children of that  node 
must likewise  be outside  the view volume, for reasons that will become  clear as we 
delve into  the workings of  BSP trees. 

Limitations of BSP Trees 
Powerful  as  they are, BSP trees  aren’t  perfect. By far  the  greatest limitation of  BSP 
trees is that they’re time-consuming to build,  enough so that,  for all practical pur- 
poses, BSP trees must be precalculated, and  cannot  be  built dynamically at  runtime. 
In fact, a BSP-tree compiler  that  attempts to perform  some optimization (limiting 
the  number of surfaces that  need  to be split, for  example) can  easily  take minutes or 
even hours to process large world databases. 
A fixed world database is fine  for walkthrough or flythrough  applications  (where  the 
viewpoint  moves through  a static scene),  but  not  much use for games or virtual real- 
ity, where objects constantly move  relative  to one another. Consequently, various 
workarounds have been  developed to allow  moving objects to appear  in BSP tree- 
based  scenes. DOOM, for  example, uses 2-D sprites mixed into BSP-based 3-D scenes; 
note,  though,  that this approach  requires  maintaining z information so that  sprites 
can be  drawn and occluded properly. Alternatively,  movable objects could be repre- 
sented as separate BSP trees and  merged anew into the world BSP tree with each 
move.  Dynamic merging may or may not be  fast enough,  depending  on  the  scene, 
but  merging BSP trees tends to  be quicker  than  building  them, because the BSP 
trees  being  merged  are already  spatially sorted. 
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Another possibility  would  be to generate a per-pixel  z-buffer for  each  frame as it’s 
rendered, to allow  dynamically changing objects to  be drawn into  the BSP-based 
world. In this scheme, the BSP tree would  allow  fast  traversal and clipping of the 
complex, static  world, and  the z-buffer  would handle  the relatively  localized  visibility 
determination involving  moving  objects. The drawback of this  is the  need for a 
memory-hungry z-buffer; a typical  640x480  z-buffer requires a fairly appalling 600K, 
with  equally appalling cache-miss implications for  performance. 
Yet another possibility  would  be  to  build the world so that each dynamic object falls 
entirely  within a single  subspace of the static BSP tree,  rather  than  straddling split- 
ting lines or planes. In this  case,  dynamic  objects can be  treated as points, which are 
then  just  sorted  into  the BSP tree on  the fly as they  move. 
The only other drawbacks  of BSP trees that I know  of are  the memory required to 
store  the  tree, which amounts to a few pointers  per  node, and  the relative complex- 
ity  of debugging BSP-tree compilation and usage; debugging a large data set being 
processed by recursive code (which BSP code  tends to be) can  be  quite a challenge. 
Tools  like the BSP compiler I’ll present in the next  chapter, which  visually depicts 
the process  of  spatial  subdivision  as a BSP tree is constructed, 
BSPdebugging: 

Building a BSP Tree 
Now that we know a good bit about what a BSP tree is, how  it 

help a great  dealwith 

telps in visible surface l- 
determination, and what  its strengths and weaknesses are, let’s  take a look at how a 
BSP tree actually  works to provide front-to-back or back-to-front ordering.  This 
chapter’s discussion will be at a conceptual level,  with  plenty  of  figures; in the  next 
chapter we’ll get  into mechanisms and implementation details. 
I’m going to discuss  only 2-D BSP trees from  here on  out, because they’re much 
easier to draw and to grasp than  their 3-D counterparts. Don’t worry, though;  the 
principles of  2-D  BSP trees using line segments generalize directly  to 3-D  BSP trees 
using  polygons. Also, 2-D  BSP trees are quite powerful in  their own right, as evi- 
denced by DOOM,  which  is built around 2-D BSP trees. 
First,  let’s construct a simple BSP tree. Figure 59.2 shows a set of four lines that will 
constitute our sample world.  I’ll refer  to these  as  walls, because that’s one easily- 
visualized context in which a 2-D  BSP tree would be useful in a game. Think of  Figure 
59.2  as depicting vertical walls  viewed from directly  above, so they’re lines for  the 
purpose of the BSP tree. Note that  each wall has a front side, denoted by a normal 
(perpendicular) vector, and a back side. To  make a BSP tree for this sample set, we 
need to split the world in two, then each part  into two again, and so on, until each 
wall resides  in  its own unique subspace. An obvious question,  then, is  how should we 
carve up the world  of  Figure  59.2? 
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A sample set of walls, viewed from above. 
Figure 59.2 

There  are infinitely valid  ways to carve up Figure 59.2, but  the simplest is just to carve 
along  the  lines of the walls themselves,  with each node containing one wall. This is 
not necessarily optimal,  in  the sense of producing  the smallest tree,  but it has  the 
virtue of generating the splitting  lines  without expensive analysis. It also  saves on 
data storage, because the  data  for  the walls can do double duty in describing  the 
splitting  lines as  well. (Putting  one wall on each  splitting  line  doesn’t actually create 
a  unique subspace for  each wall, but  it does  create  a  unique subspace boundary for 
each wall;  as  we’ll see, that spatial organization provides for  the same unambiguous 
visibility ordering as a  unique subspace would.) 
Creating a BSP tree is a recursive  process, so we’ll perform the h t  split and go from there. 
Figure 59.3 shows the world  carved along the line of  wall C into two parts: walls that are 
in  front ofwall C, and walls that are  behind. (Any of the walls  would  have been  an equally 
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Initial split along the line of wall C. 
Figure 59.3 
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valid choice for the initial  split; we'll return to the issue  of choosing  splitting walls in the 
next chapter.) This  splitting into front and back  is the essential  dualism of BSP trees. 
Next, in Figure 59.4, the  front subspace of wall C is split by  wall D. This is the only 
wall in that subspace, so we're done with wall C's front subspace. 
Figure 59.5  shows the back subspace of wall C being split by  wall B. There's  a differ- 
ence here, though: Wall A straddles the splitting line generated  from wall B. Does 
wall A belong in the  front  or back subspace of  wall B? 

Split of wall C j .  front subspace along the line of wall D. 
Figure 59.4 

BSP tree  

fronl 

Split of wall C's buck subspace along the line of wall B. 
Figure 59.5 
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Both, actually.  Wall A gets  split into two pieces, which I’ll call wall A and wall E; each 
piece is assigned  to the  appropriate subspace and  treated as a  separate wall. As shown 
in  Figure  59.6, each of the split pieces then has a subspace to itself, and each be- 
comes a leaf  of the  tree. The BSP tree is  now complete. 

Visibility Ordering 
Now that we’ve  successfully built  a BSP tree, you might justifiably be a little puzzled 
as to how  any  of this helps with  visibility ordering. The answer is that each BSP node 
can definitively determine which of its child trees is nearer  and which is farther from 
any and all  viewpoints; applied  throughout  the  tree, this principle makes it possible 
to establish visibility ordering  for all the  line segments or planes in a BSP tree, no 
matter what the viewing angle. 
Consider  the world  of Figure 59.2  viewed from an  arbitrary  angle, as  shown  in Figure 
59.7. The viewpoint is in  front of  wall C; this tells us that all  walls belonging to the 
front tree  that  descends  from wall C are  nearer  along every  ray from  the viewpoint 
than wall C is (that is, they can’t be occluded by  wall C) . All the walls in wall C’s back 
tree  are likewise farther away than wall C along any  ray. Thus,  for this  viewpoint, we 
know for  sure  that if we’re  using the  painter’s  algorithm, we want to draw  all the walls 
in the back tree first, then wall C, and  then  the walls in  the  front  tree. If the view- 
point  had  been  on  the back side of  wall C, this order would  have been reversed. 
Of course, we need  more  ordering  information  than wall C alone can give us, but we 
get  that by traversing the  tree recursively, making the same far-near decision at each 
node. Figure 59.8 shows the  painter’s  algorithm  (back-to-front) traversal order of 
the  tree  for  the viewpoint  of Figure 59.7. At each  node, we decide  whether we’re 

BSP tree 

~ _ _ ~ ~  ”~ ~ 

The final BSP tree. 
Figure 59.6 
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Viewing  the  BSP  tree from an arbitrary angle. 
Figure 59.7 

seeing the  front  or back side of that  node’s wall, then visit  whichever  of the wall’s 
children is on the  far side from the viewpoint,  draw the wall, and  then visit the node’s 
nearer  child,  in  that  order. Visiting a child is recursive, involving the same far-near 
visiting order. 
The key is that  each BSP splitting line  separates all the walls in  the  current subspace 
into two groups relative  to the viewpoint, and every single member of the  farther 

Note: ‘F‘ and ‘N‘ indicate  the far and  near  children, 
respectively, of each node from the viewpoint of 
Figure 59.7. 

Back-to-front  traversal  of  the BSP  tree as viewed in Figure 59.7. 
Figure 59.8 
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group is guaranteed  not  to occlude every single member of the nearer. By applying 
this ordering recursively, the BSP tree can be traversed to provide back-to-front or 
front-to-back ordering, with each  node  being visited  only once. 
The type of tree walk used to  produce front-to-back or back-to-front BSP traversal is 
known as an inorderwalk.  More on this very shortly; you’re also  likely to find  a discus- 
sion of inorder walking in any good  data  structures book. The only special aspect of 
BSP walks  is that a decision has to be made at each node  about which way the node’s 
wall  is facing relative to the viewpoint, so we  know which child  tree is nearer  and 
which is farther. 
Listing 59.1 shows a  function  that draws a BSP tree back-to-front. The decision whether 
a node’s wall is facing forward, made by WallFacingForward() in Listing 59.1, can, in 
general, be made by generating  a  normal to the node’s wall in screenspace (perspec- 
tive-corrected  space as seen  from  the viewpoint) and checking  whether  the z 
component of the  normal is positive or negative, or by checking the sign  of the  dot 
product of a viewspace (non-perspective corrected space as seen from  the viewpoint) 
normal and a ray from  the viewpoint to the wall. In 2-D, the decision can be made by 
enforcing  the convention that when a wall is viewed from  the  front,  the  start vertex is 
leftmost; then  a simple screenspace comparison of the  x  coordinates of the left and 
right vertices indicates which way the wall is facing. 

listing  59.1  159-1 .C 
v o i d  WalkBSPTree(N0DE  *pNode) 
I 

i f  (Wal lFacingForward(pNode)  { 
i f  (pNode->Backch i ld )  { 

1 
Draw(pNode); 
i f  ( p N o d e - > F r o n t c h i l d )  I 

I 
J e l s e  { 

i f  ( p N o d e - > F r o n t c h i l d )  { 

1 
Draw(pNode): 
i f  (pNode->Backch i ld )  { 

I 

WalkBSPTree(pN0de->Backchi ld) ;  

WalkBSPTree(pN0de->Frontchi ld) :  

WalkBSPTree(pN0de->Frontchi ld) :  

WalkBSPTree(pN0de->Backchild): 

1 
I 

Be aware that BSP trees can  often be made smaller and  more  efficient by detecting p collinear surfaces (like aligned wall segments) and generating only  one BSP node 
for each collinear set, with  the collinear surfaces stored in, say, a linked list at- 
tached to that  node. Collinear surfacespartition space identically and  can ’t occlude 
one  another, so it  suffices to generate one splitting node for each collinear set. 
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Inorder Walks of BSP Trees 
It was implementing BSP trees  that  got me to  thinking  about inorder tree traversal. 
In inorder traversal, the  left  subtree of each node gets visited first, then  the  node, 
and  then  the  right  subtree. You apply  this sequence recursively to  each node  and its 
children  until  the  entire  tree has been visited, as  shown in Figure 59.9. Walking a 
BSP tree is basically an  inorder  tree walk; the only difference is that with a BSP tree 
a decision is made  before  each  descent as to which subtree  to visit first, rather  than 
simply visiting whatever’s pointed  to by the  left-subtree  pointer. Conceptually, how- 
ever, an  inorder walk is what’s used to traverse a BSP tree;  from now on I’ll discuss 
normal  inorder walking,  with the  understanding  that  the same principles apply to 
BSP trees. 
As I’ve  said again and again in my printed works  over the years, you  have  to dig deep 
below the  surface to real4 understand  something if  you  want to  get  it  right, and 
inorder walking turns out to be an excellent  example of this. In fact, it’s such  a  good 
example  that I routinely use i t  as an interview question for programmer  candidates, 
and, to my astonishment, not  one interviewee has done  a good job with this one yet. 
I ask the  question  in two stages, and I get remarkably consistent results. 
First, I ask for  an  implementation of a  function WalkTree() that visits each node in a 
passed-in tree  in  inorder  sequence. Each candidate  unhesitatingly writes something 
like the perfectly good  code  in Listings 59.2 and 59.3 shown next. 

An inorder walk of a BSP tree. 
Figure 59.9 
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Listing 59.2 159-2.C 
I /  F u n c t i o n   t o   i n o r d e r   w a l k  a t r e e ,   u s i n g   c o d e   r e c u r s i o n  
/ /  T e s t e d   w i t h   3 2 - b i t   V i s u a l  C++ 1.10. 
Pi n c l  ude < s t d l  i b.  h> 
l i n c l  ude  “ t ree .   h ”  
e x t e r n   v o i d   V i s i t ( N 0 D E   * p N o d e ) :  
v o i d  WalkTree(N0DE  *pNode) 
( 

I /  Make s u r e   t h e   t r e e   i s n ’ t   e m p t y  
i f  (pNode !- NULL) 
( 

/ /  T r a v e r s e   t h e   l e f t   s u b t r e e .  i f  t h e r e  i s  one 
i f  ( p N o d e - > p L e f t C h i l d  !- NULL) 
I 

I 
I /  V i s i t   t h i s  node 
V i s i t ( p N o d e ) :  
/ /  T r a v e r s e   t h e   r i g h t   s u b t r e e .  i f  t h e r e   i s  one 
i f  (pNode->pRightCh i ld  !- NULL) 
I 

1 

WalkTree(pNode->pLeftChild): 

WalkTree(pNode->pRightChild); 

I 
1 

listing  59.3 159-3.H 
/ /  Header f i l e  TREE.H f o r   t r e e - w a l k i n g   c o d e .  
t y p e d e f   s t r u c t  -NODE I 

s t r u c t  -NODE * p L e f t C h i l d :  
s t r u c t  -NODE * p R i g h t C h i l d ;  

1 NODE: 

Then I ask  if  they  have  any idea how to make the  code  faster;  some  don’t,  but most 
point  out  that  function calls are  pretty expensive. Either way, I then ask them to 
rewrite the  function  without  code  recursion. 
And then I sit  back and squirm  for  a  minimum of 15 minutes. 
I have  never had anyone write a  functional data-recursion inorder walk function  in 
less  time than  that, and several people have  simply  never gotten  the  code to work at 
all. Even the best of them have fumbled  their way through  the  code, sticking  in a 
push here or a pop there,  then working through sample scenarios in  their  head to 
see  what’s broken,  programming by trial and  error until  the  errors seem to be gone. 
No one is  ever sure they  have it right;  instead,  when they  can’t find any more bugs, 
they  look at me hopefully to see if it’s thumbs-up or thumbs-down. 
And  yet, a data-recursive inorder walk implementation has exactly the same flowchart 
and exactly the same functionality as the code-recursive  version  they’ve  already  writ- 
ten. They  already  have a fully functional  model to follow,  with  all the problems solved, 
but they can’t make the  connection between that  model and  the code  they’re trylng 
to implement. Why  is this? 
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Know it Cold 
The problem is that these people  don't  understand  inorder walking through  and 
through. They understand  the  concepts of  visiting left and right subtrees, and they 
have a  general  picture of how traversal  moves about  the  tree,  but they do  not under- 
stand exactly  what the code-recursive version does. If they really comprehended 
everything that  happens  in  each  iteration of WalkTreeO-how each call  saves the 
state, and what that implies for  the order in which operations  are performed-they 
would  simply and without fuss implement  code like that  in Listing 59.4, working with 
the code-recursive version  as a model. 

Listing 59.4  159-4.C 
/ I  F u n c t i o n   t o   i n o r d e r   w a l k  a t r e e ,   u s i n g   d a t a   r e c u r s i o n .  
/ /  No s t a c k   o v e r f l o w   t e s t i n g   i s   p e r f o r m e d .  
/ /  T e s t e d   w i t h   3 2 - b i t   V i s u a l  C++ 1.10. 
# i n c l u d e   < s t d l i b . h >  
#i n c l  ude " t r e e .  h" 
# d e f i n e  MAX-PUSHED-NODES 100 
ex te rn   vo id   V i s i t (NO0E  *pNode) :  
v o i d  WalkTree(NO0E  *pNode) 
( 

NODE *NodeStack[MAX-PUSHED_NODESI: 
NODE **pNodeStack; 
/ /  Make s u r e   t h e   t r e e   i s n ' t   e m p t y  
i f  (pNode !- NULL) 
I 

NodeStackCOl - NULL: / /  push  "s tack  empty"   va lue 
pNodeStack - NodeStack + 1; 
f o r  ( : : )  
[ 

/ /  I f  the   cu r ren t   node   has  a l e f t   c h i l d ,  push 
I /  t h e   c u r r e n t   n o d e   a n d   d e s c e n d   t o   t h e   l e f t  
/ /  c h i l d   t o   s t a r t   t r a v e r s i n g   t h e   l e f t   s u b t r e e .  
/ I  Keep d o i n g   t h i s   u n t i l  we come t o  a node 
/ /  w i t h   n o   l e f t   c h i l d ;   t h a t ' s   t h e   n e x t  node t o  
I /  v i s i t   i n   i n o r d e r  sequence 
w h i l e   ( p N o d e - > p L e f t C h i l d  !- NULL) 

*pNodeStack++ - pNode: 
pNode - p N o d e - > p L e f t C h i l d ;  

We're a t  a node t h a t  has  no l e f t   c h i l d .  S O  

v i s i t   t h e  n o d e ,   t h e n   v i s i t   t h e   r i g h t  
s u b t r e e  i f  t h e r e  i s  one. o r   t h e   l a s t -  
pushed  node  o therw ise :   repeat   fo r   each 
popped  node u n t i l  one w i t h  a r i g h t  
s u b t r e e   i s   f o u n d  o r  we run   ou t   o f   pushed 
n o d e s   ( n o t e   t h a t   t h e   l e f t   s u b t r e e s   o f  
pushed  nodes  have  a l ready  been  v is i ted.  s o  
t h e y ' r e   e q u i v a l e n t   a t   t h i s   p o i n t   t o   n o d e s  
w i t h   n o   l e f t   c h i l d r e n )  

f o r  ( : : I  
{ 

V i s i t ( p N o d e 1 ;  
I /  I f  the  node  has a r i g h t   c h i l d .  make 
/ /  t h e   c h i l d   t h e   c u r r e n t   n o d e  and s t a r t  
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I !  
/ I  
/ /  
/ /  
/ /  
i f  
I 

t r a v e r s i n g   t h a t   s u b t r e e ;   o t h e r w i s e ,   p o p  
b a c k   u p   t h e   t r e e ,   v i s i t i n g  nodes we 
passed  on  the way down, u n t i l  we f i n d  a 
node w i t h  a r i g h t   s u b t r e e   t o   t r a v e r s e  
or   run   ou t   o f   pushed  nodes   and  a re   done 
(pNode->pRightCh i ld  !- NULL) 

/ /  Current   node  has a r i g h t   c h i l d :  
/ /  t r a v e r s e   t h e   r i g h t   s u b t r e e  
pNode - pNode->pRightCh i ld :  
b r e a k :  

Pop t h e   n e x t   n o d e   f r o m   t h e   s t a c k  so 
we can v i s i t  i t  and  see i f  it has a 
r i g h t   s u b t r e e   t o   b e   t r a v e r s e d  
((pNode - *-pNodeStack) - NULL) 

/ I  S t a c k  i s  empty  and  the  current   node 
/ /  has  no r i g h t   c h i l d :   w e ’ r e   d o n e  
r e t u r n :  

Take a few minutes to look over  Listing 59.4 and relate  it to Listing 59.2. The struc- 
ture is different, but  upon examination  it  becomes clear that  both listings reflect the 
same underlying model: For each  node, visit the  left  subtree, visit the  node, visit the 
right  subtree. And although Listing 59.4 is longer, that’s  mostly  because I  commented 
it heavily to make sure its  workings are  understood;  there  are only 13 lines that actu- 
ally do anything in Listing 59.4. 
Let’s look at  it  another way.  All the  code in  Listing 59.2 does is  say: “Here I am at  a 
node. First  I’ll  visit the  left  subtree if there is one,  then I’ll  visit this node,  then I’ll 
visit the  right  subtree if there is one. While I’m visiting the left subtree, I’ll just push 
a  marker on a stack that tells  me to  come back here when  the left subtree is done. If, 
after visiting a node,  there  are  no  right  children  to visit and  nothing left on  the stack, 
I’m finished. The code  does this at each node-and  that’s allit does.  That’s all  List- 
ing 59.4 does, too,  but  people  tend to get  tangled up in  pushes and pops and while 
loops when  they  use data  recursion.  When  the  implementation  model  changes  to 
one with  which  they are unfamiliar, they abandon the perfectly good  model they 
used before and try to rederive it in the new context by the  seat of their  pants. 

Here S a secret when you ’re faced with a situation like this: Step back  and get a 1 clear picture of what your code has to do. Omit no steps. You should  build a model 
that is so consistent and solid that you can instantly answer any question about 
how  the code should behave in any situation. For example, my intewiavees often 
decide, by trial and  error,  that  there  are two distinct types of right children:  Right 
children visited after popping back  to visit a node after the left subtree has  been 
visited, and right children visited after descending to a node  that  has  no  left child. 
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This makes the traversal code a mass of special cases, each of which has to be 
detected by the programmer by trying out scenarios. Worse, you can never be sure 
with this approach that you 've caught all the special cases. 
The alternative is to develop and apply a  unlfiing model. There  aren  't really two 
types of right children; the rule is that all right children  are visited after their 
parents are visited, period. The presence or absence of a left child is irrelevant. 
The possibility that a right child may be reached via different code paths depend- 
ing on the presence of a left child does not afect the overall model. While this 
distinction may seem trivial it is in fact crucial, because ifyou have the model 
down cold, you can always tell if the implementation is correct by comparing it 
with the model. 

Measure and Learn 
How much difference does all this fuss make, anyway? Listing  59.5  is a sample pro- 
gram that builds a  tree,  then calls WalkTree () to walk it 1,000 times, and times  how 
long this takes.  Using  32-bit  Visual C+t 1.10 running  on Windows NT, with default 
optimization selected, Listing 59.5 reports  that Listing 59.4 is about 20 percent faster 
than Listing  59.2 on a 486/33, a reasonable return for  a little code  rearrangement, 
especially when you consider that  the  speedup is diluted by calling the Visit() func- 
tion and by the  cache miss that  happens  on virtually  every node access. (Listing 59.5 
builds a  rather  unique  tree,  one in which  every node has exactly two children. Differ- 
ent sorts of trees can and  do  produce  different  performance results. Always know 
what you're measuring!) 

listing 59.5 159-5.C 
/ /  Sample  program t o  e x e r c i s e   a n d   t i m e   t h e   p e r f o r m a n c e  of  
I1 imp lemen ta t i ons  o f  Wal k T r e e 0 .  
/ /  T e s t e d   w i t h   3 2 - b i t   V i s u a l  C++ 1.10 under  Windows NT. 
# i n c l u d e   < s t d i o . h >  
# inc lude   <con io .h>  
#i n c l   u d e   < s t d l  i b.   h>  
# inc lude   < t ime .h>  
#i n c l   u d e   " t r e e .  h" 
l o n g   V i s i t c o u n t  - 0;  
v o i d   m a i n ( v o i d 1 ;  
void  Bui ldTree(N0DE  *pNode. i n t  RemainingOepth): 
e x t e r n   v o i d  WalkTree(N0DE  *pRootNode); 
v o i d   m a i n 0  
{ 

NODE RootNode; 
i n t  i; 
l o n g   S t a r t T i m e ;  
I /  B u i l d  a sample t r e e  
Bu i ldTree(&RootNode.   14) ;  
11 Walk t h e   t r e e  1000 t imes  and  see how l o n g  i t  takes  
S t a r t T i m e  - time(NULL); 
f o r   ( i - 0 :  i<lOOO; i++) 
( 

I 
WalkTree(&RootNode); 
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p r i n t f ( " S e c o n d s   e l a p s e d :   % l d \ n " .  
t ime(NULL) - S t a r t T i m e l :  

g e t c h (  1 ; 
1 
/ /  
/ /  F u n c t i o n   t o  add r i g h t  and l e f t   s u b t r e e s  of t h e  
/ /  s p e c i f i e d   d e p t h   o f f   t h e   p a s s e d - i n  node. 
/ I  
vo id   Bu i ldTree(N0DE *pNode, i n t  RemainingDepth) 
r 

i f  (RemainingDepth - 0) 
c 

p N o d e - > p L e f t C h i l d  - NULL; 
pNode->pRightCh i ld  - NULL: 

3 
e l s e  
I 

p N o d e - > p L e f t C h i l d  - m a l l o c ( s i z e o f ( N 0 D E ) ) :  
i f  ( p N o d e - > p L e f t C h i l d  - NULL) 
c 

p r i n t f ( " 0 u t   o f   m e m o r y \ n " ) :  
e x i t ( 1 ) :  

3 
pNode->pRightCh i ld  - m a l l o c ( s i z e o f ( N 0 D E ) ) :  
i f  (pNode->pRightCh i ld  - NULL) 

p r i n t f ( " 0 u t   o f   m e m o r y \ n " ) :  
e x i t ( 1 ) ;  

r 

1 
BuildTree(pNode->pLeftChild. RemainingDepth - 1): 
BuildTree(pNode->pRightChild. RemainingDepth - 1): 

1 
I 
/ /  
/ /  N o d e - v i s i t i n g   f u n c t i o n  so WalkTreeO  has  something t o  
/ /  c a l l .  
/ I  
void  V is i t (N0DE  *pNode)  
{ 

3 
Vi s i  tCount++: 

Things  change when maximum optimization is selected, however: The performance 
of the two implementations becomes virtually identical! How can this be?  Part of the 
answer  is that  the  compiler  does  an amazingly good job with  Listing 59.2. Most  im- 
pressively, when compiling Listing 59.2, the compiler actually converts all right-subtree 
descents from  code recursion to data  recursion, by simply jumping back to the left- 
subtree  handling  code instead of recursively calling WalkTreeO. This means  that 
half the time Listing 59.4 has no advantage over Listing 59.2; in fact, it's at a disad- 
vantage because the  code  that  the  compiler  generates  for  handling right-subtree 
descent in Listing 59.4 is somewhat inefficient, but  the right-subtree code  in Listing 
59.2 is a marvel of code  generation, atjust 3 instructions. 
What's more,  although left-subtree traversal  is more efficient with data recursion 
than with code  recursion,  the advantage is only four instructions, because only one 
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parameter is passed and because the  compiler doesn’t bother setting up an EBP- 
based stack frame, instead it  uses ESP to address the stack. (And, in fact,  this  cost 
could be  reduced still further by eliminating the check for a NULL pNode at all but 
the  top level.) There  are  other interesting aspects to what the  compiler  does with 
Listings  59.2 and 59.4 but that’s enough  to give  you the idea. It’s worth noting  that 
the compiler might not  do as well  with code recursion in a more complex function, 
and  that a good assembly language implementation  could probably speed up Listing 
59.4 enough to make it measurably faster than Listing  59.2, but  not even  close to 
being enough faster to be worth the effort. 
The moral of this  story (apart  from  it being a good  idea to enable compiler optimiza- 
tion) is: 
1. Understand  what  you’re  doing,  through  and  through. 
2. Build a complete  and  consistent  model  in  your  head. 
3. Design  from  the  principles  that  the  model  provides. 
4. Implement  the  design. 
5. Measure  to  learn  what  you’ve  wrought. 
6. Go back  to  step 1 and  apply  what  you’ve just  learned. 

With each iteration you’ll dig deeper,  learn  more, and improve your ability to know 
where and how  to  focus your design and programming efforts.  For example, with 
the C compilers I used five to 10 years ago, back when I learned  about  the relative 
strengths and weaknesses of code and data  recursion, and with the processors then 
in use, Listing  59.4  would  have  blown away Listing  59.2.  While doing this chapter, 
I’ve learned  that given current processors and compiler technology, data recursion 
isn’t going to  get  me any  big  wins; and yes, that was  news to  me. That’s good; this 
information saves me  from wasted effort in the  future  and tells me what to concen- 
trate on when I use recursion. 
Assume nothing,  keep digging deeper, and never stop learning and growing. The 
world  won’t hold still for you, but fortunately you can run fast enough  to  keep up if 
you just keep  at it. 
Depths within depths  indeed! 

Surfing Amidst the Trees 
In  the  next chapter, we’ll build a BSP-tree compiler, and after that, we’ll put together 
a rendering system  built around  the BSP trees the  compiler  generates. If the subject 
of BSP trees really grabs your  fancy (as  it  should if you care at all about  performance 
graphics) there is at this  writing (February 1996) a World  Wide  Web page on BSP 
trees that you must investigate at http://www.qualia.com/bspfaq/. It’s set up in the 
familiar Internet Frequently Asked Questions (FAQ)  style, and is  very good stuff. 
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