
; NORESET.ASM
;
; A short TSR that patches the int 9 interrupt and intercepts the
; ctrl-alt-del keystroke sequence.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except b y rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resi dent programs. Such
; code was omitted from this program because of len gth constraints.
;
; cseg and EndResident must occur before the standa rd library segments!

cseg segment para public 'code'
OldInt9 dword ?
cseg ends

; Marker segment, to find the end of the resident s ection.

EndResident segment para public 'Resident'
EndResident ends

 .xlist
 include stdlib.a
 includelib stdlib.lib
 .list

DelScanCode equ 53h

; Bits for the various modifier keys

CtrlBit equ 4
AltBit equ 8

KbdFlags equ <byte ptr ds:[17h]>

cseg segment para public 'code'
 assume ds:nothing

; SetCmd- Sends the command byte in the AL re gister to the 8042
; keyboard microcontroller chip (comm and register at port 64h).

SetCmd proc near
 push cx
 push ax ;Save comma nd value.
 cli ;Critical r egion, no ints now.

; Wait until the 8042 is done processing the curren t command.

 xor cx, cx ;Allow 65,5 36 times thru loop.
Wait4Empty: in al, 64h ;Read keybo ard status register.
 test al, 10b ;Input buff er full?
 loopnz Wait4Empty ;If so, wai t until empty.

; Okay, send the command to the 8042:

 pop ax ;Retrieve c ommand.
 out 64h, al
 sti ;Okay, ints can happen again.
 pop cx
 ret

SetCmd endp

; MyInt9- Interrupt service routine for the k eyboard hardware
; interrupt. Tests to see if the user has pressed a
; DEL key. If not, it passes control on to the original
; int 9 handler. If so, it first chec ks to see if the
; alt and ctrl keys are currently dow n; if not, it passes
; control to the original handler. Ot herwise it eats the
; scan code and doesn't pass the DEL through.

MyInt9 proc far
 push ds
 push ax
 push cx

 mov ax, 40h
 mov ds, ax

 mov al, 0ADh ;Disable ke yboard
 call SetCmd
 cli ;Disable in terrupts.
 xor cx, cx
Wait4Data: in al, 64h ;Read kbd s tatus port.
 test al, 10b ;Data in bu ffer?
 loopz Wait4Data ;Wait until data available.

 in al, 60h ;Get keyboa rd data.
 cmp al, DelScanCode ;Is it the delete key?
 jne OrigInt9
 mov al, KbdFlags ;Okay, we'v e got DEL, is
 and al, AltBit or CtrlBit ; ctr l+alt down too?
 cmp al, AltBit or CtrlBit
 jne OrigInt9

; If ctrl+alt+DEL is down, just eat the DEL code an d don't pass it through.

 mov al, 0AEh ;Reenable t he keyboard
 call SetCmd

 mov al, 20h ;Send EOI (end of interrupt)
 out 20h, al ; to the 82 59A PIC.
 pop cx
 pop ax
 pop ds
 iret

; If ctrl and alt aren't both down, pass DEL on to the original INT 9
; handler routine.

OrigInt9: mov al, 0AEh ;Reenable t he keyboard
 call SetCmd

 pop cx
 pop ax
 pop ds
 jmp cs:OldInt9
MyInt9 endp

Main proc
 assume ds:cseg

 mov ax, cseg
 mov ds, ax

 print
 byte "Ctrl-Alt-Del Filter",cr,lf
 byte "Installing....",cr,lf,0

; Patch into the INT 9 interrupt vector. Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 value directly into
; the OldInt9 variable.

 cli ;Tu rn off interrupts!
 mov ax, 0
 mov es, ax
 mov ax, es:[9*4]
 mov word ptr OldInt9, ax
 mov ax, es:[9*4 + 2]
 mov word ptr OldInt9+2, ax
 mov es:[9*4], offset MyInt9
 mov es:[9*4+2], cs
 sti ;Ok ay, ints back on.

; We're hooked up, the only thing that remains is t o terminate and
; stay resident.

 print
 byte "Installed.",cr,lf,0

 mov ah, 62h ;Ge t this program's PSP
 int 21h ; v alue.

 mov dx, EndResident ;Co mpute size of program.
 sub dx, bx
 mov ax, 3100h ;DO S TSR command.
 int 21h
Main endp
cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends
 end Main

