
Linux 1.0 / bootsect.s 1

!
! SYS_SIZE is the number of clicks (16 bytes) to be loaded.
! 0x7F00 is 0x7F000 bytes = 508kB, more than enough for current
! versions of linux which compress the kernel
!
#include <linux/config.h>
SYSSIZE = DEF_SYSSIZE
!
! bootsect.s Copyright (C) 1991, 1992 Linus Torval ds
! modified by Drew Eckhardt
! modified by Bruce Evans (bde)
!
! bootsect.s is loaded at 0x7c00 by the bios-startu p routines, and moves
! itself out of the way to address 0x90000, and jum ps there.
!
! bde - should not jump blindly, there may be syste ms with only 512K low
! memory. Use int 0x12 to get the top of memory, e tc.
!
! It then loads 'setup' directly after itself (0x90 200), and the system
! at 0x10000, using BIOS interrupts.
!
! NOTE! currently system is at most (8*65536-4096) bytes long. This should
! be no problem, even in the future. I want to keep it simple. This 508 kB
! kernel size should be enough, especially as this doesn't contain the
! buffer cache as in minix (and especially now that the kernel is
! compressed :-)
!
! The loader has been made as simple as possible, a nd continuos
! read errors will result in a unbreakable loop. Re boot by hand. It
! loads pretty fast by getting whole tracks at a ti me whenever possible.

.text

SETUPSECS = 4 ! nr of setup-sectors
BOOTSEG = 0x07C0 ! original address of boot-sec tor
INITSEG = DEF_INITSEG ! we move boot here - out of the way
SETUPSEG = DEF_SETUPSEG ! setup starts here
SYSSEG = DEF_SYSSEG ! system loaded at 0x10000 (65536).

! ROOT_DEV & SWAP_DEV are now written by "build".
ROOT_DEV = 0
SWAP_DEV = 0
#ifndef SVGA_MODE
#define SVGA_MODE ASK_VGA
#endif
#ifndef RAMDISK
#define RAMDISK 0
#endif
#ifndef CONFIG_ROOT_RDONLY
#define CONFIG_ROOT_RDONLY 0
#endif

! ld86 requires an entry symbol. This may as well b e the usual one.
.globl _main
_main:
#if 0 /* hook for debugger, harmless unless BIOS is fussy (old HP) */
 int 3
#endif
 mov ax,#BOOTSEG
 mov ds,ax
 mov ax,#INITSEG
 mov es,ax
 mov cx,#256
 sub si,si
 sub di,di
 cld
 rep
 movsw
 jmpi go,INITSEG

go: mov ax,cs
 mov dx,#0x4000-12 ! 0x4000 is arbitrary value >= l ength of
 ! bootsect + length of setup + room for stack
 ! 12 is disk parm size

Linux 1.0 / bootsect.s 2

! bde - changed 0xff00 to 0x4000 to use debugger at 0x6400 up (bde). We
! wouldn't have to worry about this if we checked t he top of memory. Also
! my BIOS can be configured to put the wini drive t ables in high memory
! instead of in the vector table. The old stack mi ght have clobbered the
! drive table.

 mov ds,ax
 mov es,ax
 mov ss,ax ! put stack at INITSEG:0x4000-12.
 mov sp,dx
/*
 * Many BIOS's default disk parameter tables will n ot
 * recognize multi-sector reads beyond the maximum sector number
 * specified in the default diskette parameter tabl es - this may
 * mean 7 sectors in some cases.
 *
 * Since single sector reads are slow and out of th e question,
 * we must take care of this by creating new parame ter tables
 * (for the first disk) in RAM. We will set the ma ximum sector
 * count to 18 - the most we will encounter on an H D 1.44.
 *
 * High doesn't hurt. Low does.
 *
 * Segments are as follows: ds=es=ss=cs - INITSEG,
 * fs = 0, gs = parameter table segment
 */

 push #0
 pop fs
 mov bx,#0x78 ! fs:bx is parameter table address
 seg fs
 lgs si,(bx) ! gs:si is source

 mov di,dx ! es:di is destination
 mov cx,#6 ! copy 12 bytes
 cld

 rep
 seg gs
 movsw

 mov di,dx
 movb 4(di),*18 ! patch sector count

 seg fs
 mov (bx),di
 seg fs
 mov 2(bx),es

 mov ax,cs
 mov fs,ax
 mov gs,ax

 xor ah,ah ! reset FDC
 xor dl,dl
 int 0x13

! load the setup-sectors directly after the bootblo ck.
! Note that 'es' is already set up.

load_setup:
 xor dx, dx ! drive 0, head 0
 mov cx,#0x0002 ! sector 2, track 0
 mov bx,#0x0200 ! address = 512, in INITSEG
 mov ax,#0x0200+SETUPSECS ! service 2, nr of sector s
 ! (assume all on head 0, track 0)
 int 0x13 ! read it
 jnc ok_load_setup ! ok - continue

 push ax ! dump error code
 call print_nl
 mov bp, sp
 call print_hex
 pop ax

 xor dl, dl ! reset FDC
 xor ah, ah
 int 0x13
 jmp load_setup

Linux 1.0 / bootsect.s 3

ok_load_setup:

! Get disk drive parameters, specifically nr of sec tors/track

#if 0

! bde - the Phoenix BIOS manual says function 0x08 only works for fixed
! disks. It doesn't work for one of my BIOS's (198 7 Award). It was
! fatal not to check the error code.

 xor dl,dl
 mov ah,#0x08 ! AH=8 is get drive parameters
 int 0x13
 xor ch,ch
#else

! It seems that there is no BIOS call to get the nu mber of sectors. Guess
! 18 sectors if sector 18 can be read, 15 if sector 15 can be read.
! Otherwise guess 9.

 xor dx, dx ! drive 0, head 0
 mov cx,#0x0012 ! sector 18, track 0
 mov bx,#0x0200+SETUPSECS*0x200 ! address after se tup (es = cs)
 mov ax,#0x0201 ! service 2, 1 sector
 int 0x13
 jnc got_sectors
 mov cl,#0x0f ! sector 15
 mov ax,#0x0201 ! service 2, 1 sector
 int 0x13
 jnc got_sectors
 mov cl,#0x09

#endif

got_sectors:
 seg cs
 mov sectors,cx
 mov ax,#INITSEG
 mov es,ax

! Print some inane message

 mov ah,#0x03 ! read cursor pos
 xor bh,bh
 int 0x10

 mov cx,#9
 mov bx,#0x0007 ! page 0, attribute 7 (normal)
 mov bp,#msg1
 mov ax,#0x1301 ! write string, move cursor
 int 0x10

! ok, we've written the message, now
! we want to load the system (at 0x10000)

 mov ax,#SYSSEG
 mov es,ax ! segment of 0x010000
 call read_it
 call kill_motor
 call print_nl

! After that we check which root-device to use. If the device is
! defined (!= 0), nothing is done and the given dev ice is used.
! Otherwise, either /dev/PS0 (2,28) or /dev/at0 (2, 8), depending
! on the number of sectors that the BIOS reports cu rrently.

 seg cs
 mov ax,root_dev
 or ax,ax
 jne root_defined
 seg cs
 mov bx,sectors
 mov ax,#0x0208 ! /dev/ps0 - 1.2Mb
 cmp bx,#15
 je root_defined
 mov ax,#0x021c ! /dev/PS0 - 1.44Mb
 cmp bx,#18
 je root_defined
 mov ax,#0x0200 ! /dev/fd0 - autodetect

Linux 1.0 / bootsect.s 4

root_defined:
 seg cs
 mov root_dev,ax

! after that (everyting loaded), we jump to
! the setup-routine loaded directly after
! the bootblock:

 jmpi 0,SETUPSEG

! This routine loads the system at address 0x10000, making sure
! no 64kB boundaries are crossed. We try to load it as fast as
! possible, loading whole tracks whenever we can.
!
! in: es - starting address segment (normally 0x100 0)
!
sread: .word 1+SETUPSECS ! sectors read of current track
head: .word 0 ! current head
track: .word 0 ! current track

read_it:
 mov ax,es
 test ax,#0x0fff
die: jne die ! es must be at 64kB boundary
 xor bx,bx ! bx is starting address within segment
rp_read:
 mov ax,es
 sub ax,#SYSSEG
 cmp ax,syssize ! have we loaded all yet?
 jbe ok1_read
 ret
ok1_read:
 seg cs
 mov ax,sectors
 sub ax,sread
 mov cx,ax
 shl cx,#9
 add cx,bx
 jnc ok2_read
 je ok2_read
 xor ax,ax
 sub ax,bx
 shr ax,#9
ok2_read:
 call read_track
 mov cx,ax
 add ax,sread
 seg cs
 cmp ax,sectors
 jne ok3_read
 mov ax,#1
 sub ax,head
 jne ok4_read
 inc track
ok4_read:
 mov head,ax
 xor ax,ax
ok3_read:
 mov sread,ax
 shl cx,#9
 add bx,cx
 jnc rp_read
 mov ax,es
 add ah,#0x10
 mov es,ax
 xor bx,bx
 jmp rp_read

read_track:
 pusha
 pusha
 mov ax, #0xe2e ! loading... message 2e = .
 mov bx, #7
 int 0x10
 popa

 mov dx,track
 mov cx,sread
 inc cx
 mov ch,dl

Linux 1.0 / bootsect.s 5

 mov dx,head
 mov dh,dl
 and dx,#0x0100
 mov ah,#2

 push dx ! save for error dump
 push cx
 push bx
 push ax

 int 0x13
 jc bad_rt
 add sp, #8
 popa
 ret

bad_rt: push ax ! save error code
 call print_all ! ah = error, al = read

 xor ah,ah
 xor dl,dl
 int 0x13

 add sp, #10
 popa
 jmp read_track

/*
 * print_all is for debugging purposes.
 * It will print out all of the registers. The ass umption is that this is
 * called from a routine, with a stack frame like
 * dx
 * cx
 * bx
 * ax
 * error
 * ret <- sp
 *
*/

print_all:
 mov cx, #5 ! error code + 4 registers
 mov bp, sp

print_loop:
 push cx ! save count left
 call print_nl ! nl for readability

 cmp cl, 5
 jae no_reg ! see if register name is needed

 mov ax, #0xe05 + 'A - 1
 sub al, cl
 int 0x10

 mov al, #'X
 int 0x10

 mov al, #':
 int 0x10

no_reg:
 add bp, #2 ! next register
 call print_hex ! print it
 pop cx
 loop print_loop
 ret

print_nl:
 mov ax, #0xe0d ! CR
 int 0x10
 mov al, #0xa ! LF
 int 0x10
 ret

Linux 1.0 / bootsect.s 6

/*
 * print_hex is for debugging purposes, and prints the word
 * pointed to by ss:bp in hexadecmial.
*/

print_hex:
 mov cx, #4 ! 4 hex digits
 mov dx, (bp) ! load word into dx
print_digit:
 rol dx, #4 ! rotate so that lowest 4 bits are use d
 mov ah, #0xe
 mov al, dl ! mask off so we have only next nibble
 and al, #0xf
 add al, #'0 ! convert to 0-based digit
 cmp al, #'9 ! check for overflow
 jbe good_digit
 add al, #'A - '0 - 10

good_digit:
 int 0x10
 loop print_digit
 ret

/*
 * This procedure turns off the floppy drive motor, so
 * that we enter the kernel in a known state, and
 * don't have to worry about it later.
 */
kill_motor:
 push dx
 mov dx,#0x3f2
 xor al, al
 outb
 pop dx
 ret

sectors:
 .word 0

msg1:
 .byte 13,10
 .ascii "Loading"

.org 498
root_flags:
 .word CONFIG_ROOT_RDONLY
syssize:
 .word SYSSIZE
swap_dev:
 .word SWAP_DEV
ram_size:
 .word RAMDISK
vid_mode:
 .word SVGA_MODE
root_dev:
 .word ROOT_DEV
boot_flag:
 .word 0xAA55

