!
| SYS_SIZE is the number of clicks (16 bytes) to be

1 Ox7F00 is 0x7F000 bytes = 508kB, more than enough

I versions of linux which compress the kernel
!

#include <linux/config.h>

SYSSIZE = DEF_SYSSIZE

modified by Drew Eckhardt

1
! bootsect.s
!
! modified by Bruce Evans (bde)

i bootsect.s is loaded at 0x7c00 by the bios-startu

I itself out of the way to address 0x90000, and jum

!

! bde - should not jump blindly, there may be syste
I memory. Use int 0x12 to get the top of memory, e
!

! It then loads 'setup’ directly after itself (0x90

! at 0x10000, using BIOS interrupts.

!

I NOTE! currently system is at most (8*65536-4096)
! be no problem, even in the future. | want to keep

! kernel size should be enough, especially as this

I buffer cache as in minix (and especially now that

! compressed :-)

|

! The loader has been made as simple as possible, a
! read errors will result in a unbreakable loop. Re

! loads pretty fast by getting whole tracks at a ti

text

SETUPSECS =4

BOOTSEG =0x07CO

INITSEG = DEF_INITSEG
SETUPSEG = DEF_SETUPSEG
SYSSEG = DEF_SYSSEG

I ROOT_DEV & SWAP_DEYV are now written by "build".

ROOT_DEV =0

SWAP_DEV =0

#ifndef SVGA_MODE

#define SVGA_MODE ASK_VGA
#endif

#ifndef RAMDISK

#define RAMDISK 0

#endif

#ifndef CONFIG_ROOT_RDONLY
#define CONFIG_ROOT_RDONLY 0

#endif
11d86 requires an entry symbol. This may as well b
.globl _main
_main:
#if 0 /* hook for debugger, harmless unless BIOS is
int 3
#endif
mov ax,#BOOTSEG
mov ds,ax
mov ax,#INITSEG
mov es,ax
mov CX,#256
sub si,si
sub di,di
cld
rep
movsw

jmpi go,INITSEG

go: mov ax,cs

mov dx,#0x4000-12 ! 0x4000 is arbitrary value >= |

! nr of setup-sectors
| original address of boot-sec
! we move boot here - out
| setup starts here
I system loaded at 0x10000

Linux 1.0 / bootsect.s

loaded.
for current

Copyright (C) 1991, 1992 Linus Torval ds

p routines, and moves
ps there.

ms with only 512K low
tc.

200), and the system

bytes long. This should
it simple. This 508 kB
doesn't contain the

the kernel is

nd continuos
boot by hand. It
me whenever possible.

tor

(65536).

e the usual one.

fussy (old HP) */

ength of

! bootsect + length of setup + room for stack

112 is disk parm size

! bde - changed 0xff00 to 0x4000 to use debugger at
' wouldn't have to worry about this if we checked t

' my BIOS can be configured to put the wini drive t
!instead of in the vector table. The old stack mi

Linux 1.0 / bootsect.s

0x6400 up (bde). We
he top of memory. Also
ables in high memory
ght have clobbered the

! drive table.
mov ds,ax
mov es,ax
mov Ss,ax ! put stack at INITSEG:0x4000-12.
mov sp,dx
/*
* Many BIOS's default disk parameter tables will n ot
* recognize multi-sector reads beyond the maximum sector number
* specified in the default diskette parameter tabl es - this may
* mean 7 sectors in some cases.
*
* Since single sector reads are slow and out of th e question,
* we must take care of this by creating new parame ter tables
* (for the first disk) in RAM. We will set the ma ximum sector
* count to 18 - the most we will encounter on an H D 1.44.
*
* High doesn't hurt. Low does.
*
* Segments are as follows: ds=es=ss=cs - INITSEG,
* fs = 0, gs = parameter table segment
*
push #0
pop fs
mov bx,#0x78 | fs:bx is parameter table address
seg fs
lgs si,(bx) | gs:si is source
mov di,dx ! es:di is destination
mov CX,#6 ! copy 12 bytes
cld
rep
seg gs
movsw
mov di,dx
movb 4(di),*18 | patch sector count
seg fs
mov (bx),di
seg fs
mov 2(bx),es
mov ax,cs
mov fs,ax
mov gs,ax
xor ah,ah I reset FDC
xor di,dl
int 0x13
! load the setup-sectors directly after the bootblo ck.

! Note that 'es' is already set up.

load_setup:
xor dx, dx ! drive 0, head 0
mov cx,#0x0002 I sector 2, track O
mov bx,#0x0200 l'address = 512, in INITSEG
mov ax,#0x0200+SETUPSECS ! service 2, nr of sector s
! (assume all on head 0, track 0)
int 0x13 Iread it
jnc ok_load_setup ! ok - continue
push ax ! dump error code
call print_nl
mov bp, sp
call print_hex
pop ax
xor di, di I reset FDC
xor ah, ah
int 0x13
jmp load_setup

ok_load_setup:

! Get disk drive parameters, specifically nr of sec

#if 0

! bde - the Phoenix BIOS manual says function 0x08

! disks. It doesn't work for one of my BIOS's (198
! fatal not to check the error code.

Linux 1.0 / bootsect.s

tors/track

only works for fixed
7 Award). It was

xor dl,dl

mov ah,#0x08
int 0x13

xor ch,ch

#else

I AH=8 is get drive parameters

! It seems that there is no BIOS call to get the nu
118 sectors if sector 18 can be read, 15 if sector
! Otherwise guess 9.

mber of sectors. Guess
15 can be read.

xor dx, dx ! drive 0, head O
mov cx,#0x0012 ! sector 18, track 0
mov bx,#0x0200+SETUPSECS*0x200 ! address after se tup (es = cs)
mov ax,#0x0201 I service 2, 1 sector
int 0x13
jnc got_sectors
mov cl,#0x0f ! sector 15
mov ax,#0x0201 I service 2, 1 sector
int 0x13
jnc got_sectors
mov cl,#0x09
#endif
got_sectors:
seg cs
mov sectors,cx
mov ax,#INITSEG
mov es,ax
! Print some inane message
mov ah,#0x03 I read cursor pos
xor bh,bh
int 0x10
mov CcX,#9
mov bx,#0x0007 ! page 0, attribute 7 (normal)
mov bp,#msgl
mov ax,#0x1301 ! write string, move cursor
int 0x10
! ok, we've written the message, now
I we want to load the system (at 0x10000)
mov ax,#SYSSEG
mov es,ax ! segment of 0x010000
call read_it
call kill_motor
call print_nl
| After that we check which root-device to use. If the device is
I defined (!= 0), nothing is done and the given dev ice is used.
! Otherwise, either /dev/PSO0 (2,28) or /dev/atO (2, 8), depending
! on the number of sectors that the BIOS reports cu rrently.

seg cs

mov ax,root_dev

or ax,ax

jne root_defined

seg cs

mov bx,sectors

mov ax,#0x0208 ! /dev/ps0 - 1.2Mb
cmp bx,#15

je root_defined

mov ax,#0x021c ! /dev/PSO0 - 1.44Mb
cmp bx,#18

je root_defined

mov ax,#0x0200

! /dev/fd0 - autodetect

root_defined:
seg cs
mov root_dev,ax

| after that (everyting loaded), we jump to
! the setup-routine loaded directly after
! the bootblock:

jmpi 0,SETUPSEG

! This routine loads the system at address 0x10000,
! no 64kB boundaries are crossed. We try to load it
! possible, loading whole tracks whenever we can.

|

i in: es - starting address segment (normally 0x100
|

sread: .word 1+SETUPSECS ! sectors read of current

head: .word 0 ! current head
track: .word 0 ! current track

read_it:
mov ax,es
test ax,#0xOfff

die: jne die ! es must be at 64kB boundary

Linux 1.0 / bootsect.s n

making sure
as fast as

0)

track

xor bx,bx ! bx is starting address within segment

rp_read:
mov ax,es
sub ax,#SYSSEG

cmp ax,syssize ! have we loaded all yet?

jbe ok1_read
ret
okl_read:
seg cs
mov ax,sectors
sub ax,sread
mov cx,ax
shl cx,#9
add cx,bx
jnc ok2_read
je ok2_read
XOr ax,ax
sub ax,bx
shr ax,#9
ok2_read:
call read_track
mov cx,ax
add ax,sread
seg cs
cmp ax,sectors
jne ok3_read
mov ax,#1
sub ax,head
jne ok4_read
inc track
ok4_read:
mov head,ax
XOr ax,ax
ok3_read:
mov sread,ax
shl cx,#9
add bx,cx
jnc rp_read
mov ax,es
add ah,#0x10
mov es,ax
xor bx,bx
jmp rp_read

read_track
pusha
pusha

mov ax, #0xe2e !'loading... message 2e =.

mov bx, #7
int 0x10

popa

mov dx,track
mov cx,sread
inc cX

mov ch,dl

Linux 1.0 / bootsect.s

mov dx,head
mov dh,dl
and dx,#0x0100
mov ah,#2
push dx ! save for error dump
push cx
push bx
push ax
int 0x13
jc bad_rt
add sp, #8
popa
ret
bad_rtpush ax | save error code
call print_all I'ah = error, al = read
xor ah,ah
xor dl,dl
int 0x13
add sp, #10
popa
jmp read_track
/*
* print_all is for debugging purposes.
* It will print out all of the registers. The ass umption is that this is
* called from a routine, with a stack frame like
* dx
* CX
* bx
* ax
* error
* ret <- sp
*
*
print_all:
mov cx, #5 ! error code + 4 registers
mov bp, sp
print_loop:
push cx | save count left
call print_nl ! nl for readability
cmp cl,5
jae no_reg I see if register name is needed
mov ax, #0xe05 +'A -1
sub al, cl
int 0x10
mov al, #X
int 0x10
mov al, #"
int 0x10
no_reg:
add bp, #2 ! next register
call print_hex ! print it
pop cX
loop print_loop
ret
print_nl:
mov ax, #0xe0d ICR
int 0x10
mov al, #0xa I'LF
int 0x10

ret

Linux 1.0 / bootsect.s n

/*
print_hex is for debugging purposes, and prints the word
* pointed to by ss:bp in hexadecmial.
*
print_hex:
mov cX, #4 ! 4 hex digits
mov dx, (bp) !'load word into dx
print_digit:
rol dx, #4 | rotate so that lowest 4 bits are use d
mov ah, #0xe
mov al, dl I mask off so we have only next nibble
and al, #0xf
add al, #0 I convert to 0-based digit
cmp al, #9 I check for overflow
jbe good_digit
add al, #A-'0-10
good_digit:
int 0x10
loop print_digit
ret
/*
* This procedure turns off the floppy drive motor, o]

* that we enter the kernel in a known state, and
* don't have to worry about it later.
*/
kill_motor:
push dx
mov dx,#0x3f2
xor al, al
outb
pop dx
ret

sectors:
.word 0

msg1l:
.byte 13,10
.ascii "Loading"

.org 498
root_flags:

.word CONFIG_ROOT_RDONLY
syssize:

.word SYSSIZE
swap_dev:

.word SWAP_DEV
ram_size:

.word RAMDISK
vid_mode:

.word SVGA_MODE
root_dev:

.word ROOT_DEV
boot_flag:

.word OXAA55

