!
| SYS_SIZE is the number of clicks (16 bytes) to be

1 Ox7F00 is 0x7F000 bytes = 508kB, more than enough

I versions of linux which compress the kernel
!

#include <linux/config.h>

SYSSIZE = DEF_SYSSIZE

modified by Drew Eckhardt
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! bootsect.s
!
! modified by Bruce Evans (bde)

i bootsect.s is loaded at 0x7c00 by the bios-startu

I itself out of the way to address 0x90000, and jum

!

! bde - should not jump blindly, there may be syste
I memory. Use int 0x12 to get the top of memory, e
!

! It then loads 'setup’ directly after itself (0x90

! at 0x10000, using BIOS interrupts.

!

I NOTE! currently system is at most (8*65536-4096)
! be no problem, even in the future. | want to keep

! kernel size should be enough, especially as this

I buffer cache as in minix (and especially now that

! compressed :-)

|

! The loader has been made as simple as possible, a
! read errors will result in a unbreakable loop. Re

! loads pretty fast by getting whole tracks at a ti

text

SETUPSECS =4

BOOTSEG =0x07CO

INITSEG = DEF_INITSEG
SETUPSEG = DEF_SETUPSEG
SYSSEG = DEF_SYSSEG

I ROOT_DEV & SWAP_DEYV are now written by "build".

ROOT_DEV =0

SWAP_DEV =0

#ifndef SVGA_MODE

#define SVGA_MODE ASK_VGA
#endif

#ifndef RAMDISK

#define RAMDISK 0

#endif

#ifndef CONFIG_ROOT_RDONLY
#define CONFIG_ROOT_RDONLY 0

#endif
11d86 requires an entry symbol. This may as well b
.globl _main
_main:
#if 0 /* hook for debugger, harmless unless BIOS is
int 3
#endif
mov ax,#BOOTSEG
mov ds,ax
mov ax,#INITSEG
mov es,ax
mov CX,#256
sub si,si
sub di,di
cld
rep
movsw

jmpi  go,INITSEG

go: mov ax,cs

mov dx,#0x4000-12 ! 0x4000 is arbitrary value >= |

! nr of setup-sectors
| original address of boot-sec
! we move boot here - out
| setup starts here
I system loaded at 0x10000
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! bde - changed 0xff00 to 0x4000 to use debugger at
' wouldn't have to worry about this if we checked t

' my BIOS can be configured to put the wini drive t
!instead of in the vector table. The old stack mi
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0x6400 up (bde). We
he top of memory. Also
ables in high memory
ght have clobbered the

! drive table.
mov ds,ax
mov es,ax
mov Ss,ax ! put stack at INITSEG:0x4000-12.
mov sp,dx
/*
* Many BIOS's default disk parameter tables will n ot
* recognize multi-sector reads beyond the maximum sector number
* specified in the default diskette parameter tabl es - this may
* mean 7 sectors in some cases.
*
* Since single sector reads are slow and out of th e question,
* we must take care of this by creating new parame ter tables
* (for the first disk) in RAM. We will set the ma ximum sector
* count to 18 - the most we will encounter on an H D 1.44.
*
* High doesn't hurt. Low does.
*
* Segments are as follows: ds=es=ss=cs - INITSEG,
* fs = 0, gs = parameter table segment
*
push  #0
pop fs
mov bx,#0x78 | fs:bx is parameter table address
seg fs
lgs si,(bx) | gs:si is source
mov di,dx ! es:di is destination
mov CX,#6 ! copy 12 bytes
cld
rep
seg gs
movsw
mov di,dx
movb  4(di),*18 | patch sector count
seg fs
mov (bx),di
seg fs
mov 2(bx),es
mov ax,cs
mov fs,ax
mov gs,ax
xor ah,ah I reset FDC
xor di,dl
int 0x13
! load the setup-sectors directly after the bootblo ck.

! Note that 'es' is already set up.

load_setup:
xor dx, dx ! drive 0, head 0
mov cx,#0x0002 I sector 2, track O
mov bx,#0x0200 l'address = 512, in INITSEG
mov ax,#0x0200+SETUPSECS ! service 2, nr of sector s
! (assume all on head 0, track 0)
int 0x13 Iread it
jnc ok_load_setup ! ok - continue
push  ax ! dump error code
call  print_nl
mov bp, sp
call  print_hex
pop ax
xor di, di I reset FDC
xor ah, ah
int 0x13
jmp load_setup



ok_load_setup:

! Get disk drive parameters, specifically nr of sec

#if 0

! bde - the Phoenix BIOS manual says function 0x08

! disks. It doesn't work for one of my BIOS's (198
! fatal not to check the error code.
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tors/track

only works for fixed
7 Award). It was

xor dl,dl

mov ah,#0x08
int 0x13

xor ch,ch

#else

I AH=8 is get drive parameters

! It seems that there is no BIOS call to get the nu
118 sectors if sector 18 can be read, 15 if sector
! Otherwise guess 9.

mber of sectors. Guess
15 can be read.

xor dx, dx ! drive 0, head O
mov cx,#0x0012 ! sector 18, track 0
mov bx,#0x0200+SETUPSECS*0x200 ! address after se tup (es = cs)
mov ax,#0x0201 I service 2, 1 sector
int 0x13
jnc got_sectors
mov cl,#0x0f ! sector 15
mov ax,#0x0201 I service 2, 1 sector
int 0x13
jnc got_sectors
mov cl,#0x09
#endif
got_sectors:
seg cs
mov sectors,cx
mov ax,#INITSEG
mov es,ax
! Print some inane message
mov ah,#0x03 I read cursor pos
xor bh,bh
int 0x10
mov CcX,#9
mov bx,#0x0007 ! page 0, attribute 7 (normal)
mov bp,#msgl
mov ax,#0x1301 ! write string, move cursor
int 0x10
! ok, we've written the message, now
I we want to load the system (at 0x10000)
mov ax,#SYSSEG
mov es,ax ! segment of 0x010000
call read_it
call  kill_motor
call  print_nl
| After that we check which root-device to use. If the device is
I defined (!= 0), nothing is done and the given dev ice is used.
! Otherwise, either /dev/PSO0 (2,28) or /dev/atO (2, 8), depending
! on the number of sectors that the BIOS reports cu rrently.

seg cs

mov ax,root_dev

or ax,ax

jne root_defined

seg cs

mov bx,sectors

mov ax,#0x0208 ! /dev/ps0 - 1.2Mb
cmp bx,#15

je root_defined

mov ax,#0x021c ! /dev/PSO0 - 1.44Mb
cmp bx,#18

je root_defined

mov ax,#0x0200

! /dev/fd0 - autodetect



root_defined:
seg cs
mov root_dev,ax

| after that (everyting loaded), we jump to
! the setup-routine loaded directly after
! the bootblock:

jmpi  0,SETUPSEG

! This routine loads the system at address 0x10000,
! no 64kB boundaries are crossed. We try to load it
! possible, loading whole tracks whenever we can.

|

i in: es - starting address segment (normally 0x100
|

sread: .word 1+SETUPSECS ! sectors read of current

head: .word 0 ! current head
track: .word 0 ! current track

read_it:
mov ax,es
test ax,#0xOfff

die:  jne die ! es must be at 64kB boundary
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making sure
as fast as

0)

track

xor bx,bx ! bx is starting address within segment

rp_read:
mov ax,es
sub ax,#SYSSEG

cmp ax,syssize ! have we loaded all yet?

jbe ok1_read
ret
okl_read:
seg cs
mov ax,sectors
sub ax,sread
mov cx,ax
shl cx,#9
add cx,bx
jnc ok2_read
je ok2_read
XOr ax,ax
sub ax,bx
shr ax,#9
ok2_read:
call read_track
mov cx,ax
add ax,sread
seg cs
cmp ax,sectors
jne ok3_read
mov ax,#1
sub ax,head
jne ok4_read
inc track
ok4_read:
mov head,ax
XOr ax,ax
ok3_read:
mov sread,ax
shl cx,#9
add bx,cx
jnc rp_read
mov ax,es
add ah,#0x10
mov es,ax
xor bx,bx
jmp rp_read

read_track
pusha
pusha

mov ax, #0xe2e !'loading... message 2e =.

mov bx, #7
int 0x10

popa

mov dx,track
mov cx,sread
inc cX

mov ch,dl



Linux 1.0 / bootsect.s

mov dx,head
mov dh,dl
and dx,#0x0100
mov ah,#2
push  dx ! save for error dump
push  cx
push  bx
push  ax
int 0x13
jc bad_rt
add sp, #8
popa
ret
bad_rtpush  ax | save error code
call  print_all I'ah = error, al = read
xor ah,ah
xor dl,dl
int 0x13
add sp, #10
popa
jmp read_track
/*
* print_all is for debugging purposes.
* It will print out all of the registers. The ass umption is that this is
* called from a routine, with a stack frame like
* dx
* CX
* bx
* ax
* error
* ret <- sp
*
*
print_all:
mov cx, #5 ! error code + 4 registers
mov bp, sp
print_loop:
push  cx | save count left
call  print_nl ! nl for readability
cmp cl,5
jae no_reg I see if register name is needed
mov ax, #0xe05 +'A -1
sub al, cl
int 0x10
mov al, #X
int 0x10
mov al, #"
int 0x10
no_reg:
add bp, #2 ! next register
call  print_hex ! print it
pop cX
loop  print_loop
ret
print_nl:
mov ax, #0xe0d ICR
int 0x10
mov al, #0xa I'LF
int 0x10

ret
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/*
print_hex is for debugging purposes, and prints the word
* pointed to by ss:bp in hexadecmial.
*
print_hex:
mov cX, #4 ! 4 hex digits
mov dx, (bp) !'load word into dx
print_digit:
rol dx, #4 | rotate so that lowest 4 bits are use d
mov ah, #0xe
mov al, dl I mask off so we have only next nibble
and al, #0xf
add al, #0 I convert to 0-based digit
cmp al, #9 I check for overflow
jbe good_digit
add al, #A-'0-10
good_digit:
int 0x10
loop  print_digit
ret
/*
* This procedure turns off the floppy drive motor, o]

* that we enter the kernel in a known state, and
* don't have to worry about it later.
*/
kill_motor:
push dx
mov dx,#0x3f2
xor al, al
outb
pop dx
ret

sectors:
.word 0

msg1l:
.byte 13,10
.ascii "Loading"

.org 498
root_flags:

.word CONFIG_ROOT_RDONLY
syssize:

.word SYSSIZE
swap_dev:

.word SWAP_DEV
ram_size:

.word RAMDISK
vid_mode:

.word SVGA_MODE
root_dev:

.word ROOT_DEV
boot_flag:

.word OXAA55



