
20.4 The Keyboard BIOS Interface

Although MS-DOS provides a reasonable set of routines to read ASCII and extended character codes from the
keyboard, the PC's BIOS provides much better keyboard input facilities. Furthermore, there are lots of interesting
keyboard related variables in the BIOS data area you can poke around at. In general, if you do not need the I/O
redirection facilities provided by MS-DOS, reading your keyboard input using BIOS functions provides much more
flexibility.

To call the MS-DOS BIOS keyboard services you use the int 16h instruction. The BIOS provides the following
keyboard functions:

BIOS Keyboard Support Functions
Function

(AH)

Input

Parameters

Output

Parameters
Description

0 -
al - ASCII character

ah- scan code

Read character. Reads next available character from the system's type ahead buffer.
Wait for a keystroke if the buffer is empty.

1 -

ZF- Set if no key.

ZF- Clear if key
available.

al - ASCII code

ah- scan code

Checks to see if a character is available in the type ahead buffer. Sets the zero flag if
not key is available, clears the zero flag if a key is available. If there is an available key,
this function returns the ASCII and scan code value in ax . The value in ax is
undefined if no key is available.

2 - al- shift flags

Returns the current status of the shift flags in al. The shift flags are defined as follows:
� bit 7: Insert toggle bit 6: Capslock toggle bit 5: Numlock toggle bit 4: Scroll lock
toggle bit 3: Alt key is down bit 2: Ctrl key is down bit 1: Left shift key is down bit 0:
Right shift key is down

3

al = 5 bh = 0, 1, 2, 3
for 1/4, 1/2, 3/4, or 1
second delay bl =
0..1Fh for 30/sec to
2/sec.

-
Set auto repeat rate. The bh register contains the amount of time to wait before starting
the autorepeat operation, the bl register contains the autorepeat rate.

5 ch = scan code cl =
ASCII code

-

Store keycode in buffer. This function stores the value in the cx register at the end of
the type ahead buffer. Note that the scan code in ch doesn't have to correspond to the
ASCII code appearing in cl . This routine will simply insert the data you provide into
the system type ahead buffer.

10h -
al - ASCII
characterah- scan
code

Read extended character. Like ah=0 call, except this one passes all key codes,
the ah=0 call throws away codes that are not PC/XT compatible.

11h -

ZF- Set if no key. ZF-
Clear if key
available.al - ASCII
code ah- scan code

Like the ah=01h call except this one does not throw away keycodes that are not PC/XT
compatible (i.e., the extra keys found on the 101 key keyboard).

12h -
al- shift flags ah-
extended shift flags

Returns the current status of the shift flags in ax. The shift flags are defined as follows:
� bit 15: SysReq key pressed bit 14: Capslock key currently down bit 13: Numlock
key currently down bit 12: Scroll lock key currently down bit 11: Right alt key is down
bit 10:Right ctrl key is down bit 9: Left alt key is down bit 8: Left ctrl key is down bit
7: Insert toggle bit 6: Capslock toggle bit 5: Numlock toggle bit 4: Scroll lock toggle bit
3: Either alt key is down (some machines, left only) bit 2: Either ctrl key is down bit 1:
Left shift key is down bit 0: Right shift key is down

Note that many of these functions are not supported in every BIOS that was ever written. In fact, only the first three functions were
available in the original PC. However, since the AT came along, most BIOSes have supported at least the functions above. Many
BIOS provide extra functions, and there are many TSR applications you can buy that extend this list even farther. The following
assembly code demonstrates how to write an int 16h TSR that provides all the functions above. You can easily extend this if you
desire.

; INT16.ASM
;
; A short passive TSR that replaces the BIOS' int 1 6h handler.
; This routine demonstrates the function of each of the int 16h
; functions that a standard BIOS would provide.
;
; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you remove this code from memory except b y rebooting.
; If you want to be able to do these two things (as well as check for
; a previous installation), see the chapter on resi dent programs. Such
; code was omitted from this program because of len gth constraints.
;
;
; cseg and EndResident must occur before the standa rd library segments!

cseg segment para public 'code'
cseg ends

; Marker segment, to find the end of the resident s ection.

EndResident segment para public 'Resident'
EndResident ends

 .xlist
 include stdlib.a
 includelib stdlib.lib
 .list

byp equ <byte ptr>

cseg segment para public 'code'
 assume cs:cseg, ds:cseg

OldInt16 dword ?

; BIOS variables:

KbdFlags1 equ <ds:[17h]>
KbdFlags2 equ <ds:[18h]>
AltKpd equ <ds:[19h]>
HeadPtr equ <ds:[1ah]>
TailPtr equ <ds:[1ch]>
Buffer equ 1eh
EndBuf equ 3eh

KbdFlags3 equ <ds:[96h]>
KbdFlags4 equ <ds:[97h]>

incptr macro which
 local NoWrap
 add bx, 2
 cmp bx, EndBuf
 jb NoWrap
 mov bx, Buffer
NoWrap: mov which, bx
 endm

; MyInt16- This routine processes the int 16h function requests.

;
; AH Description
; -- --------------------------- ---------------------
; 00h Get a key from the keyboard , return code in AX.
; 01h Test for available key, ZF= 1 if none, ZF=0 and
; AX contains next key code i f key available.
; 02h Get shift status. Returns s hift key status in AL.
; 03h Set Autorepeat rate. BH=0,1 ,2,3 (delay time in
; quarter seconds), BL=0..1Fh for 30 char/sec to
; 2 char/sec repeat rate.
; 05h Store scan code (in CX) in the type ahead buffer.
; 10h Get a key (same as 00h in t his implementation).
; 11h Test for key (same as 01h).
; 12h Get extended key status. Re turns status in AX.

MyInt16 proc far
 test ah, 0EFh ;Check for 0h and 10h
 je GetKey
 cmp ah, 2 ;Check for 01h and 02h
 jb TestKey
 je GetStatus
 cmp ah, 3 ;Check for AutoRpt function.
 je SetAutoRpt
 cmp ah, 5 ;Check for StoreKey function.
 je StoreKey
 cmp ah, 11h ;Extended t est key opcode.
 je TestKey
 cmp ah, 12h ;Extended s tatus call
 je ExtStatus

; Well, it's a function we don't know about, so jus t return to the caller.

 iret

; If the user specified ah=0 or ah=10h, come down h ere (we will not
; differentiate between extended and original PC ge tc calls).

GetKey: mov ah, 11h
 int 16h ;See if key is available.
 je GetKey ;Wait for k eystroke.

 push ds
 push bx
 mov ax, 40h
 mov ds, ax
 cli ;Critical r egion! Ints off.
 mov bx, HeadPtr ;Ptr to nex t character.
 mov ax, [bx] ;Get the ch aracter.
 incptr HeadPtr ;Bump up He adPtr
 pop bx
 pop ds
 iret ;Restores i nterrupt flag.

; TestKey- Checks to see if a key is availabl e in the keyboard buffer.
; We need to turn interrupts on here (so the kbd ISR can
; place a character in the buffer if one is pending).
; Generally, you would want to save t he interrupt flag here.
; But BIOS always forces interrupts o n, so there may be some
; programs out there that depend on t his, so we won't "fix"
; this problem.

;
; Returns key status in ZF and AX. If ZF=1 then no key is
; available and the value in AX is in determinate. If ZF=0
; then a key is available and AX cont ains the scan/ASCII
; code of the next available key. Thi s call does not remove
; the next character from the input b uffer.

TestKey: sti ;Turn on th e interrupts.
 push ds
 push bx
 mov ax, 40h
 mov ds, ax
 cli ;Critical r egion, ints off!
 mov bx, HeadPtr
 mov ax, [bx] ;BIOS retur ns avail keycode.
 cmp bx, TailPtr ;ZF=1, if e mpty buffer
 pop bx
 pop ds
 sti ;Inst back on.
 retf 2 ;Pop flags (ZF is important!)

; The GetStatus call simply returns the KbdFlags1 v ariable in AL.

GetStatus: push ds
 mov ax, 40h
 mov ds, ax
 mov al, KbdFlags1 ;Just retur n Std Status.
 pop ds
 iret

; StoreKey- Inserts the value in CX into the ty pe ahead buffer.

StoreKey: push ds
 push bx
 mov ax, 40h
 mov ds, ax
 cli ;Ints off, critical region.
 mov bx, TailPtr ;Address wh ere we can put
 push bx ; next key code.
 mov [bx], cx ;Store the key code away.
 incptr TailPtr ;Move on to next entry in buf.
 cmp bx, HeadPtr ;Data overr un?
 jne StoreOkay ;If not, ju mp, if so
 pop TailPtr ; ignore ke y entry.
 sub sp, 2 ;So stack m atches alt path.
StoreOkay: add sp, 2 ;Remove jun k data from stk.
 pop bx
 pop ds
 iret ;Restores i nterrupts.

; ExtStatus- Retrieve the extended keyboard stat us and return it in
; AH, also returns the standard keybo ard status in AL.

ExtStatus: push ds
 mov ax, 40h
 mov ds, ax

 mov ah, KbdFlags2

 and ah, 7Fh ;Clear fina l sysreq field.
 test ah, 100b ;Test cur s ysreq bit.
 je NoSysReq ;Skip if it 's zero.
 or ah, 80h ;Set final sysreq bit.
NoSysReq:
 and ah, 0F0h ;Clear alt/ ctrl bits.
 mov al, KbdFlags3
 and al, 1100b ;Grab rt al t/ctrl bits.
 or ah, al ;Merge into AH.
 mov al, KbdFlags2
 and al, 11b ;Grab left alt/ctrl bits.
 or ah, al ;Merge into AH.

 mov al, KbdFlags1 ;AL contain s normal flags.
 pop ds
 iret

; SetAutoRpt- Sets the autorepeat rate. On entry, bh=0, 1, 2, or 3 (delay
; in 1/4 sec before autorepeat starts) and bl=0..1Fh (repeat
; rate, about 2:1 to 30:1 (chars:sec) .

SetAutoRpt: push cx
 push bx

 mov al, 0ADh ;Di sable kbd for now.
 call SetCmd

 and bh, 11b ;Fo rce into proper range.
 mov cl, 5
 shl bh, cl ;Mo ve to final position.
 and bl, 1Fh ;Fo rce into proper range.
 or bh, bl ;80 42 command data byte.
 mov al, 0F3h ;80 42 set repeat rate cmd.
 call SendCmd ;Se nd the command to 8042.
 mov al, bh ;Ge t parameter byte
 call SendCmd ;Se nd parameter to the 8042.

 mov al, 0AEh ;Re enable keyboard.
 call SetCmd
 mov al, 0F4h ;Re start kbd scanning.
 call SendCmd

 pop bx
 pop cx
 iret

MyInt16 endp

; SetCmd- Sends the command byte in the AL re gister to the 8042
; keyboard microcontroller chip (comm and register at
; port 64h).

SetCmd proc near
 push cx
 push ax ;Sa ve command value.
 cli ;Cr itical region, no ints now.

; Wait until the 8042 is done processing the curren t command.

 xor cx, cx ;Al low 65,536 times thru loop.
Wait4Empty: in al, 64h ;Re ad keyboard status register.
 test al, 10b ;In put buffer full?
 loopnz Wait4Empty ;If so, wait until empty.

; Okay, send the command to the 8042:

 pop ax ;Retrieve c ommand.
 out 64h, al
 sti ;Okay, ints can happen again.
 pop cx
 ret
SetCmd endp

; SendCmd- The following routine sends a comma nd or data byte to the
; keyboard data port (port 60h).

SendCmd proc near
 push ds
 push bx
 push cx
 mov cx, 40h
 mov ds, cx
 mov bx, ax ;Save data byte

 mov bh, 3 ;Retry cnt.
RetryLp: cli ;Disable in ts while accessing HW.

; Clear the Error, Acknowledge received, and resend received flags
; in KbdFlags4

 and byte ptr KbdFlags4, 4fh

; Wait until the 8042 is done processing the curren t command.

 xor cx, cx ;Allow 65,5 36 times thru loop.
Wait4Empty: in al, 64h ;Read keybo ard status register.
 test al, 10b ;Input buff er full?
 loopnz Wait4Empty ;If so, wai t until empty.

; Okay, send the data to port 60h

 mov al, bl
 out 60h, al
 sti ;Allow inte rrupts now.

; Wait for the arrival of an acknowledgement from t he keyboard ISR:

 xor cx, cx ;Wait a lon g time, if need be.
Wait4Ack: test byp KbdFlags4, 10 ;Acknowle dge received bit.
 jnz GotAck
 loop Wait4Ack
 dec bh ;Do a retry on this guy.
 jne RetryLp

; If the operation failed after 3 retries, set the error bit and quit.

 or byp KbdFlags4, 80h ;Set err or bit.

GotAck: pop cx
 pop bx
 pop ds
 ret
SendCmd endp

Main proc

 mov ax, cseg
 mov ds, ax

 print
 byte "INT 16h Replacement",cr,lf
 byte "Installing....",cr,lf,0

; Patch into the INT 9 and INT 16 interrupt vectors . Note that the
; statements above have made cseg the current data segment,
; so we can store the old INT 9 and INT 16 values d irectly into
; the OldInt9 and OldInt16 variables.

 cli ;Tu rn off interrupts!
 mov ax, 0
 mov es, ax
 mov ax, es:[16h*4]
 mov word ptr OldInt16, ax
 mov ax, es:[16h*4 + 2]
 mov word ptr OldInt16+2, ax
 mov es:[16h*4], offset MyInt16
 mov es:[16h*4+2], cs
 sti ;Ok ay, ints back on.

; We're hooked up, the only thing that remains is t o terminate and
; stay resident.

 print
 byte "Installed.",cr,lf,0

 mov ah, 62h ;Ge t this program's PSP
 int 21h ; v alue.

 mov dx, EndResident ;Co mpute size of program.
 sub dx, bx
 mov ax, 3100h ;DO S TSR command.
 int 21h
Main endp
cseg ends

sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends

zzzzzzseg segment para public 'zzzzzz'
LastBytes db 16 dup (?)
zzzzzzseg ends
 end Main

20.3 The Keyboard DOS Interface

MS-DOS provides several calls to read characters from the keyboard. The primary thing to note about the DOS calls
is that they only return a single byte. This means that you lose the scan code information the keyboard interrupt
service routine saves in the type ahead buffer.

If you press a key that has an extended code rather than an ASCII code, MS-DOS returns two keycodes. On the first
call MS-DOS returns a zero value. This tells you that you must call the get character routine again. The code MS-DOS
returns on the second call is the extended key code.

Note that the Standard Library routines call MS-DOS to read characters from the keyboard. Therefore, the Standard
Library getc routine also returns extended keycodes in this manner. The gets and getsm routines throw away any
non-ASCII keystrokes since it would not be a good thing to insert zero bytes into the middle of a zero terminated
string.

