
09.03.2015 Working with structures in NASM

http://mcs.uwsuper.edu/sb/224/Intro/struct_nasm.html 1/2

CSCI 224: Assembly Language Programming

Working with structures in NASM

A structure groups several fields in a single unit. The syntax to define a structure is shown on the following example:

STRUC Point
.x: RESD 1
.y: RESD 1
.size:
ENDSTRUC

Here Point is the structure name and the fields x and y define the offsets within the structure. Thus, x = 0 and y =
4. The y field is initialized with 0. The dots in front of the field names are optional. However, they make the fields
name local to the structure and allow to distinguish between similarly named fields in different structures by using the
dot notation.

The next example shows how to declare a structure in the .data segment:

SEGMENT .data
myPoint: ISTRUC Point
AT Point.x, DD 1
AT Point.y, DD 2
IEND

The example below shows how to reserve place for structure in .bss segment:

SEGMENT .bss
myPoint: RESB Point.size

To access the structure fields use the field references, or indirect operands, or the dot notation:

SEGMENT .data
p: ISTRUC Point
AT Point.x, DD 1
AT Point.y, DD 2
IEND

SEGMENT.text
mov eax, [p + Point.x] ; eax = 1 (field reference)
mov esi, p ; (indirect operands)
mov eax, [esi + 4] ; eax = y
mov eax, [esi + Point.y] ; eax = y

The following code expects the user to enter 10 integer numbers and puts then in 5 structures of type Point in the
first loop. The second loop over the filled structures causes printing of the points coordinates. The last portion of code
prints the point declared in the .data segment.

%INCLUDE "csci224.inc"

STRUC Point ; structure definition

09.03.2015 Working with structures in NASM

http://mcs.uwsuper.edu/sb/224/Intro/struct_nasm.html 2/2

.x: RESD 1

.y: RESD 1

.size:
ENDSTRUC

SEGMENT .data
prompt: DB "Enter point (x y): ",0

p: ISTRUC Point ; declare an instance of point and
AT Point.x, DD 5 ; initialize its fields
AT Point.y, DD 7
IEND

SEGMENT .bss
pArr: RESB Point.size*5 ; reserve place for 5 structures
pArr_l: EQU ($ - pArr) / Point.size

SEGMENT .text
main
 mov ecx, pArr_l ; reading points coords from keyboard
 mov esi, pArr
L1: mov edx, prompt
 call WriteString ; print prompt
 call ReadInt ; read x
 mov [esi + Point.x], eax ; store it in STRUC
 call ReadInt ; read y
 mov [esi + Point.y], eax ; store it in STRUC
 add esi, Point.size ; advance esi to the next point
 loop L1 ; read all points
 call Crlf

 mov ecx, pArr_l ; output points to the screen
 mov esi, pArr
L2: mov eax, [esi + Point.x] ; get x-coord
 call WriteInt ; output it
 mov al, ' ' ; space between the x/y values
 call WriteChar
 mov eax, [esi + Point.y] ; get y-coord
 call WriteInt ; output it
 call Crlf ; start new line
 add esi, Point.size ; get to the next point
 loop L2 ; output 'em all
 call Crlf

 mov eax, [p + Point.x] ; get x-coord
 call WriteInt ; output it
 mov al, ' ' ; space between the x/y values
 call WriteChar
 mov eax, [p + Point.y] ; get y-coord
 call WriteInt ; output it
 call Crlf

 ret

