
1

Serial Communications

2

2

Serial Communication

 Introduction
 Serial communication buses
 Asynchronous and synchronous communication
 UART block diagram
 UART clock requirements
 Programming the UARTs
 Operation modes
 Baud rate calculations—timer 1
 Initializing the UART—using timer 1
 Baud rate calculations—timer 2
 Initializing the UART—using timer 2
 UARTx interrupt flags—receiving data
 UARTx interrupt flags—sending data

We start this lecture by looking at the functional block diagram of the UART. We will learn
how to program the UARTs and the different modes in which UARTs may be configured.
We will learn how to program Timer 1 and Timer 2 to generate the baud rate. The interrupt
flags for receiving and sending data will be covered.

3

3

Serial Communication Buses

 Many popular serial communication standards exist—some
examples are:
 RS-232 (using UART)
 Serial peripheral interface (SPI)
 System management bus (SMBus)
 Serial ATA (SATA)

 Many Silicon Labs devices support UART, SMBus and SPI

 UART: Universal asynchronous receiver/transmitter

There are quite a few standards to choose from when considering a serial communications
protocol and in many MCUs multiple standards are supported on the same IC. RS232 or
UART is one of the most popular standards and is the one we are going to cover in this
course. The Serial Peripheral interface is a synchronous serial interface that uses 4 (or 3)
wires to communicate between what is considered a master device and a slave device. The
data lines are for the data input, data output and the clock. The fourth wire is for the chip
select such that multiple slave devices can be on the bus. The SMBus is a two wire bus that
consists of one wire for data input and output and then one wire for the clock. Multiple
devices can be added on the bus as the protocol provides an addressing scheme for data
transfers. Serial ATA is a serial form of the parallel bus used in the PC for things like hard
disk drive connections.

4

4

Parallel Communication

 Parallel communication implies sending a whole byte (or more) of data over
multiple parallel wires

 Control bits used to determine the timing for reading and writing the data

RD

D(7:0)

WR

D(7:0)

A(15:0)

A(15:0)

WR
RD

D(7:0)

A(15:0)
16

8

In this course we are going to cover how to transmit data between two relatively low speed
devices. To accomplish this data transfer we really have two choices, transfer data in
parallel or in series. Here is an example of a parallel communications using a standard
External Memory Interface (EMIF) as a reference. Some Silicon Labs MCUs provide this
interface to external memory or devices. In this communications method the address and
data are sent as multiple wires. The number of pins required for the example shown above
is 26 (address + data + control). By moving to serial we can reduce the pin count to the IC.
Another aspect of parallel busses that becomes a limitation is the transmission speed. This
really isn’t a concern when considering interfaces in the 8 bit MCU space, however, as
speeds increase the interfacing becomes much more of a challenge as the propagation
delays between the data lines and their relationship with the clock sources is minimized.

5

5

Synchronous Serial Communication

 Serial communication implies sending data bit by bit over a single wire
 Synchronous serial requires the clock signal to be transmitted from the source

along with the data
 Data rate for the link must be the same for the transmitter and the receiver

D7D0

CLK

Data Out

Latch data on rising edges Output data on falling edges

Synchronous Serial

D6D5D4D3D2D1

D7D0Data In D6D5D4D3D2D1

We just saw how parallel communications has a wide data bus typically 8 bits or more. The
data bits are sent out together in conjunction with a clock and control signaling and these
interfaces require high pin count depending on the width of the data bus. With serial data
we are referring to transmitting each bit one after the other over a single wire. These
interfaces require low pin counts since only one pin is required to transmit or receive data.
In this course we are covering very low data rate interfaces used in microcontrollers. The
serial interfaces in these systems are asynchronous (clock is not sourced with the data) or
synchronous (clock is sourced with the data). You can see from the diagram that the
synchronous serial interface provides a clock with the data. The transmitter drives data out
the pin on one edge of the clock and the receiver latches data on the following edge.

6

6

Synchronous Serial Communication

 In the synchronous mode, the transmitter and receiver share a common clock

 The transmitter typically provides the clock as a separate signal in addition to the
serial data

Transmitter Receiver
Data

Clock

1 byte-wide Data 1 byte-wide Data

Converts the serial data
back to the parallel form

Provides the clock as a
separate signal

No start, stop, or parity bits
added to data

Extracts the data using the
clock provided by the

transmitter

Shifts the data onto the serial
line using its own clock

ReceiverTransmitter

As mentioned earlier, in synchronous serial communications, the transmitter sends the data
out the pin at a specific rate determined by the internal clock system. This clock is also
output along with the data in order for a receiving device to know when to latch the
incoming data bits. By sending the clock output along with the data there are no additional
bits required to provide a synchronization time for a receiver. The receiving device just
latches the data based on the received clock and converts the data internally to a parallel
value for use by the CPU. Clock speed, clock polarity and data width are all established at
design time. One aspect not shown here is the use of a chip enable (CE) control signal. In
some synchronous serial interfaces the chip enable is used to allow multiple devices to be
connected to the same bus. This is typical of Serial Peripheral Interface (SPI) devices.

7

7

Asynchronous Serial Communication Terms

 Start bit—indicates the beginning of the data
word

 Stop bit—indicates the end of the data word

 Parity bit—added for error detection (optional)

 Data bits—the actual data to be transmitted

 Baud rate—the bit rate of the serial port

 Throughput—actual data transmitted per sec
(total bits transmitted-overhead)
 Example: 115200 baud = 115200 bits/sec
 If using 8-bit data, 1 start, 1 stop, and no parity

bits, the effective
throughput is: 115200 * 8 / 10 = 92160 bits/sec

We are going to look at asynchronous serial communications. Here are some terms we hear
when discussing this transmission type. Take a minute to familiarize yourself with these
terms as we will be using them in subsequent slides.

8

8

Asynchronous Serial Communication

 Serial communication implies sending data bit by bit over a single wire
 Asynchronous transmission is easy to implement but less efficient as it requires an

extra 2-3 control bits for every 8 data bits
 This method is usually used for low volume transmission

D1 D2 D3 D4 D5 D6D0 D7 P

1 bit time

Asynchronous Serial

Asynchronous clock reload
at falling edge of start

Internal
Async
clock

Rx Data

Start bit Parity bit Stop bit

In asynchronous serial communications, data is transmitted without the clock. Therefore, it
is up the MCU to synchronize its internal baud rate clock to the incoming data. In the case
of RS232 the start bit is used to start the process. The start bit tells the receiver the phase
relationship required for the internal clock used to latch the data bits. The rate of this clock
is typically determined at design time, however, there are some applications where devices
are required to determine the baud rate from the incoming data stream. The example above
shows one way for devices to align their internal clock with the incoming data. Once the
start bit is received then the clock system restarts its count sequence allowing for the clock
edges to line up according to the bit time specified.

9

9

Asynchronous Serial Communication

 With asynchronous communication, the transmitter and receiver do not
share a common clock

Transmitter Receiver+

1 byte-wide Data

Data
–

1 byte-wide Data

Add: Start, Stop, Parity Bits Remove: Start, Stop, Parity Bits

Converts the serial data
back to the parallel form

after stripping off the start,
stop, and parity bits

Also adds the start, stop,
and parity check bits

Extracts the data using its
own clock

Shifts the parallel data onto
the serial line using its own

clock

ReceiverTransmitter

We mentioned earlier slides that the synchronous serial interface provides a clock with the
data and we showed how an asynchronous interface receives the data on a pin and then
synchronizes an internal clock to be able to accurately receive the data. It is asynchronous
because the receiving device has no knowledge of the clock tolerance or jitter of the source
port. The only information we have is the baud rate of the link. The baud rate is the bit rate
of the link in bits/second. Some common rates for UART communications are 19200 baud,
57600 baud or 115200 baud. When the receiver starts receiving the data it will synchronize
its baud clock such that the edges align with the rate of the incoming data stream. In doing
so it can then latch the bits and convert them to the parallel value required by the CPU.

10

10

UART Block Diagram

This diagram shows the various functional blocks of a UART peripheral found in the
Silicon Labs C8051F900 family. There are two Special Function Registers (SFR) - SBUFx
and SCONx – used to control and manage the serial communication. The UART peripheral
is split between the transmit and receive sides. From the diagram you can see the entire
interface is driven by a separate block called the UART Baud Rate Generator. This is the
internal clock source used to recover the received data as well as time the transmitted data
output. We will see in later slides how to set up the baud rates using the internal timers.
The I/O is controlled via the crossbar which is a special Silicon Labs feature that enables
peripheral usage even on the smallest pin count devices by moving the pin assignments
based on utilization. Lastly is the interrupt generation which allows the CPU to be running
other tasks while UART communications are active and only service the peripheral when
the transmission is complete.

11

11

UART Block

 The UART0 peripheral is accessed by two SFRs—SBUFx
and SCONx

 The serial port buffer (SBUFx) is two distinct buffers
 Writing loads data to be transmitted to the write-only buffer

 Reading accesses received data from the read-only buffer

 The serial port control register (SCONx) contains status and
control bits
 The control bits set the operating mode for the serial port, and status

bits indicate the end of the character transmission or reception

 The status bits are tested in software (polling) or programmed to
cause an interrupt

Even though the ‘programmer’s model” has only one Serial Port Buffer (SBUFx), there are
essentially two separate and distinct hardware buffers (registers) - the transmit write-only
buffer and the receive read-only register. Writing to SBUF0 sends the data out serially from
the Transmit Shift register through the TX0 pin. The data received on RX0 pin is
accumulated in the Receive Latch. A read of SBUF0 fetches the data from the Receive
Latch.

The Serial Port Control register (SCONx) contains the status and control bits. The control
bits set the operating mode for the serial port, and status bits indicate the end of the
character transmission or reception. The status bits are tested in software (polling) or
programmed to cause an interrupt.

12

12

UART Clock Requirements

 A UART needs a clock input for bit timing

 UART baud rates are usually much lower than the MCU system clock,
so the system clock cannot be directly used as the UART clock

 Timers are used to generate the UART baud rate by dividing down the
system clock
 Example: MCU system clock—24.5 MHz; UART baud rate—57600

 A bit time accuracy of 2.5% or better is required at both the transmitter
and receiver ends to be able to communicate without errors
 Silicon Labs’ internal oscillators can be used to generate baud rates as they

provide +/-2% tolerance over temperature

This slide discusses the need for timers to be used with UARTs. Clock accuracy is
important for proper UART communication , with a worst case scenario of Tx being +2%
and Rx being –2%, the difference is 4%. The absolute timing error between the transmitter
and receiver to avoid a bit error is 5%. We split that and give half to the TX and half to the
RX, which leads to the required timing accuracy of +/- 2.5% for each side. Because the
oscillator is guaranteed to +/-2 %, that leaves 0.5% to handle baud rate generation error
(error due to a non-integer number of timer clocks per UART bit). If baud rates differ more
than this, then the received bytes can have bit errors. The Silicon Labs internal oscillators
have accuracy specifications over temperature of 2% that allow them to be used to generate
the baud rate clocks without the use of an external crystal. The internal clock used for the
baud rate clock is divided down to a lower rate for use as the baud rate clock. The example
provided shows the 24.5 MHz clock source relative to the UART baud rate required for the
application.

13

13

Operation Modes

 The UART has two modes of operation, selectable by
configuring the S0MODE bit in SCONx register

 All modes enable asynchronous communications
 8-bit UART with variable baud rate

 Most commonly used mode of operation

 9-bit UART with variable baud rate
 Used if 9-bit data transmission is required

The S0MODE bit in the SCON0 register is used to configure the mode of operation. There
are two modes available in this particular peripheral. The 8 bit mode and the 9 bit mode. In
this lecture we have covered the 8-Bit UART with Variable Baud Rate (Mode 1) and will
look at programming the UART peripheral for this mode in more detail so we will take a
minute here to discuss the 9 bit mode. There are some applications that require multiple
UARTs to be connected as a bus. The 9 bit mode is used to signal multiprocessor
communications such that the ninth bit gets set to indicate that the data received represents
an address. A device with a matching address can accept the data and provide the
appropriate action or response. All other devices that don’t have a matching address simply
discard the data. The 8 bit mode is the most common mode and is used as the data
representation for the RS232 standard.

14

14

Programming the UARTs

The UARTs can be programmed through the following
sequence:

 Step 1: configure the digital crossbar (XBR0 and XBR2) to enable
UART operation
 Set the TXx pin to be push-pull by setting the corresponding

PnMDOUT bit (PnMDOUT.n)

 The digital crossbar has to be configured to enable TXx and RXx as
external I/O pins (XBR0.0 for UART0 Tx on P0.4 and Rx on P0.5)

 In addition, XBARE (XBR2.6) must be set to 1 to enable the crossbar

 Step 2: initialize the appropriate timers for desired baud rate
generation
 Timer 1 can be used to generate baud rate for UART0

 Step 4: select the serial port operation mode and enable/disable
UART reception (SCONx register)

 Step 5: enable UART interrupts and set priority (if desired)

All peripherals must have their functions allocated by the crossbar in order for them to be
available at the pins of the device. In many devices there are no dedicated pins for TX and
RX, however some TX and RX signals are allocated by the crossbar to port 0 pin 4 for Tx
and port 0 pin 5 for Rx for all cases. The XBRx registers define what peripherals get
assigned to I/O through the crossbar. In addition, the I/O pins need to be configured
appropriately for the direction of the signal we map to the pin. For example, the Tx signal
requires the pin to be configured as a push pull output whereas the Rx signal requires the
pin to be configured as an input. We can configure these through the PnMDOUT register.
A suitable timer needs to be programmed to generate the baud rate. We will take a look at
the configuration of the timer in later slides. The SCON0 register is used to select the serial
port operation mode and enable/disable UART reception. We then enable the UART
interrupts and set the priorities (if desired).

15

15

SCON0 Register

Unused Read = 1b. Write = Don’t care.Unused6

Receive Interrupt Flag
Set to 1 by hardware when a byte of data has been received by UART0 (set at the STOP bit sampling time). When the UART0 interrupt
is enabled, setting this bit to 1 causes the CPU to vector to the UART0 interrupt service routine. This bit must be cleared manually by
software.

RI00

Transmit Interrupt Flag
Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in 8-bit UART Mode, or at the beginning of the
STOP bit in 9-bit UART Mode). When the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UART0 interrupt
service routine. This bit must be cleared manually by software.

TI01

9th Receive Bit
RB80 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th data bit in Mode 1.RB802

9th Transmission Bit
The logic level of this bit will be sent as the ninth transmission bit in 9-bit UART Mode (Mode 1). Unused in 8-bit mode (Mode 0).TB803

Receive Enable
0: UART0 reception disabled
1: UART0 reception enabled

REN04

Multiprocessor Communication Enable
For Mode 0 (8-bit UART): Checks for valid stop bit.

0: Logic level of stop bit is ignored.
1: RI0 will only be activated if stop bit is logic level 1.

For Mode 1 (9-bit UART): Multiprocessor Communications Enable.
0: Logic level of ninth bit is ignored.
1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1.

MCE05

Serial Port Operation Mode
0: 8 Bit UART, Variable Baud Rate
1: 9 Bit UART, Variable Baud Rate

S0MODE7

DescriptionSymbolBit

The SCON0 register is used to select the serial port operation mode and enable/disable
UART reception. The mode of operation is configured by programming the S0MODE bit.
For 8 bit UART bode, set the bit to 0. TI0 and RI0 are the Transmit Interrupt Flag and
Receive Interrupt Flag respectively. The REN0 bit is used to enable the receiver to start
accepting data from another UART peripheral.

16

16

Using Timer 1 to Generate Baud Rate

 Timer 1 in mode 2 (8-bit auto-reload mode) can be used to
generate the baud rate for UART0

Block diagram of Timer 0 in Mode 2 (8-bit Auto-reload mode)

8 bit reload register
(TH0)

8 bit timer register
(TL0)

We discussed the use of a timer in order to generate the baud rates required for the
application. Timer 1 can be used to generate the baud rate for UART0 for this peripheral.
For a detailed overview of timer operations you can check out the course that covers the
different operating modes for the timers. In order to generate the baud rate to the UART we
will use the timer in the 8 bit auto reload mode. As an overview to the timers course, this
mode allows the timer to be used as an 8 bit timer and provides a register that is capable of
reloading a count value upon overflow of the timer. The number of counts it takes the timer
to overflow using this method is 256 – TH0. For example, if our TH0 value is 0xF0 we
would have 16 counts on the timer before it reached the overflow since we start at 0xF0
each time. In this way we can generate different baud rates based on the system clock.

17

17

Baud Rate Calculations—Timer 1

 The Baud Rate and Timer 1 reload value (for TH1 register) are related by the
following equation:

Baud Rate Example:
Desired baud rate = 57600 baud
Clock input to Timer 1 = System clock = 24.5 MHz

Changing equation 1:
T1_Overflow_Rate = 2 x Baud rate
T1_Overflow_Rate = 2 x 57600 = 115200

Changing equation 2:

RateOverflowT

T

RateOverflowT

T
TH CLKCLK

__1

1
or

__1

1
2561

115200

24500000
2561TH

BxTH 201

This slide shows the equation used to calculate the reload value of TH1 register when Timer
1 is used to generate the baud rate. The baud rate is dependent on the value of T1M bit in
the CKCON register. T1M defines whether the timer is sourced by the system clock
directly or the system clock divided by 4, 12 or 48. The example provided illustrates the
use of the timer to set the baud rate to 57600. The reload value we write to the TH1 register
would be 0x2B in this case. Therefore, whenever the timer overflows the value 0x2B gets
reloaded to the timer and the count begins again from there. 0xFD, 0xFE, 0xFF, 0x2B,
0x2C, 0x2D etc…

18

18

Initializing the UART—Using Timer 1

#define SYSCLK 24500000
#define BAUDRATE 57600

void UART0_Init (void)
{

SCON0 = 0x10; // SCON0: 8-bit variable bit rate
// level of STOP bit is ignored
// RX enabled
// ninth bits are zeros
// clear RI0 and TI0 bits

TH1 = -(SYSCLK/BAUDRATE/2);
CKCON &= ~0x0B; // T0 = 1 (use system clock)
CKCON |= 0x08;
TL1 = TH1; // init Timer1
TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;
TR1 = 1; // START Timer1
IP |= 0x10; // Make UART high priority
ES0 = 1; // Enable UART0 interrupts

}

Here is a code segment to initialize the UART0 peripheral. It uses Timer 1 to generate the
baud rate at 57600 using the 8 bit auto reload mode. The reload value is stored in TH1 and
that value is also used to initialize the timer register itself so that the first count sequence is
the correct length. The CKCON register sets the clock source for the timer to be the system
clock at 24500000Hz and the SCON register enables the receiver and sets the UART mode
to 8 bit.

19

19

UART—Receiving Data

 The receive flag (RI0) in SCON0 plays an important role in receiving the
serial data

 The RI0 bit is set by hardware but must be cleared by software

 RI0 is set at the end of character reception and indicates “receive buffer
full”

 This condition is tested in software (polled) or programmed to cause an
interrupt

 If the application wishes to input (i.e. read) a character from the device
connected to the serial port (e.g. COM1 port of PC), it must wait until RI0
is set, then clear RI0 and read the character from SBUF0

The previous slide showed that the receiver was enabled by the command SCON0 = 0x10
which sets the REN0 bit. Once enabled, received data will set the RI0 bit at the end of
transmission (when the peripheral is sampling the stop bit time). If interrupts are enabled
the setting of RI0 will generate an interrupt and the interrupt service routine (ISR) will be
executed. The ISR code will have to clear the flags and read the data in the receive buffer
SBUF0.

20

20

UART—Sending Data

 Writing to SBUF initiates a serial transfer from the Tx pin

 The transmit flag (TI0) in SCON0 plays an important role in transmitting
the serial data

 TI0 is set at the end of character transmission and indicates “transmit
buffer empty”

 The TI0 bit is set by hardware but must be cleared by software

 If the application wishes to send a character to the device connected to
the serial port, it must first check that the serial port is ready

 If a previous character was sent, we must wait until transmission is
finished before sending the next character

In order to initiate a transmit cycle the processor must first check to see if the peripheral is
busy. The TI0 flag can be used to accomplish this as it indicates when the transmit buffer is
empty. Once the processor verifies the transmit buffer is empty it writes to SBUF0 to start
the transfer. As soon as data is written to the buffer the transmission begins. The TI0 flag
is set at the end of character transmission and indicates “transmit buffer empty.” This
condition occurs after the 8th bit is shifted out of the peripheral. In some applications
where a buffer of data is required to be transferred, it is useful to set up the firmware such
that writing a 1 to the TI0 bit would initiate an ISR cycle at which point the ISR can buffer
pointers the flags in order to cycle through all of data.

21

21

UART Interrupts—Sending/Receiving Data

INTERRUPT(UART0_ISR, INTERRUPT_UART0)
{

//-- Pending flags RI0 (SCON0.0) and TI0(SCON0.1)
if (RI0 == 1) // If interrupt generated from the

// receive flag
{

Byte = SBUF0; // Read a character from UART
RI0 = 0; // Clear interrupt flag

}
if (TI0 == 1) // Check if transmit flag is set
{

TI0 = 0; // Clear interrupt flag
}

}

 RIO is set by hardware to 1 at the end of the STOP sampling time for a received
byte

 Must be cleared by software
 TI0 is set by hardware to 1 after the eighth bit has been transmitted
 Must be cleared by software

This is the Interrupt Service Routine (ISR) for the UART peripheral. Keep in mind that this
is just a very high level routine for illustration purposes. On slide 10 we saw the block
diagram of the UART peripheral. An output of the module is the interrupt flag that is
generated by the receive interrupt flag (RI0) or the transmit interrupt flag (TI0). In the ISR
it is necessary to check which condition caused the CPU to vector to the ISR and in the
example shown above we execute only the code based on which flag was set using the
conditional statement. Each conditional tests the flag to see if it is set. If the condition is
true then the flag is cleared. The receive ISR pulls the data from the buffer so that it can be
used by the application. The transmit side clears the flag. The application is generally
responsible for placing the next byte to be transmitted into the transmit buffer (SBUF0).

22

22

Learn More at the Education Resource Center

 Visit the Silicon Labs website to get more information on Silicon Labs
products, technologies and tools

 The Education Resource Center training modules are designed to get
designers up and running quickly on the peripherals and tools needed
to get the design done
 http://www.silabs.com/ERC

 http://www.silabs.com/mcu

 To provide feedback on this or any other training go to:

http://www.silabs.com/ERC and click the link for feedback

Visit the Silicon Labs Education Resource Center to learn more about the MCU
products.

23

www.silabs.com/MCU

