
1

V 0.1 1

Polled IO versus Interrupt Driven IO

• Polled Input/Output (IO) – processor continually
checks IO device to see if it is ready for data
transfer
– Inefficient, processor wastes time checking for ready

condition
– Either checks too often or not often enough

• Interrupt Driven IO – IO device interrupts
processor when it is ready for data transfer
– Processor can be doing other tasks while waiting for

last data transfer to complete – very efficient.
– All IO in modern computers is interrupt driven.

V 0.1 2

Polled IO: getch()

/* return 8 bit char
from Receive port */

unsigned char getch ()
{

unsigned char c;
/* wait until character is received */

/* while (!RCIF) */
while (!bittst(PIR1,5));
c = RCREG;
return(c);

}

This is polled IO. Note
that the processor is
continually polling to
see if data is available.

Time spent checking for data
availability is WASTED time.
In some applications this
time can be spent doing
something else.

V 0.1 3

Interrupt-driven IO

Program Execution

main(){

instrA

instrB

…..

instrN

instrN+1

instrN+2

Interrupt service

interrupt service
subroutine
….

read character from
serial port, store in
temporary location, set
flag

return from interrupt

In this example, the arrival of a character to RCREG
triggers an interrupt - the normal program execution is
halted, interrupt service routine executed which reads the
character, saves in a temporary location.

Character input
to RCREG
triggers interrupt

V 0.1 4

PIC16 Interrupts
(Chap 12.10 of datasheet)

• Many PIC16 interrupt sources
– When character is received on serial port
– When character is finished transmitting on serial port
– When A/D conversion is finished
– When external pin RB0 is pulled low
– Many more… 14 interrupt sources total

• Interrupt Enable, Flag bits
– Each interrupt source has an ENABLE bit that allows

an interrupt to be generated if interrupt condition is met.
By default, interrupts are NOT enabled.

– Each interrupt source also has a FLAG bit that indicates
if the interrupt has occurred.

V 0.1 5

Global Interrupt Enable

Peripheral Interrupt Enable

Note that both ENABLE bit and
FLAG bit must be ‘1’ for interrupt to
be recognized.

Received
char.
interrupt

V 0.1 6

GIE, PEIE

• Global interrupt enable (GIE) can be used to
disable all interrupts
– By default, all interrupts disabled

• Peripheral interrupt enable (PEIE) can be used to
disable all peripheral interrupts
– By default, all peripheral interrupts disabled
– Peripheral interrupts are those associated with

peripheral subsystems such as the USART, the
Analog/Digital converter, timers, etc.

2

V 0.1 7

Interrupt Service Routine (ISR)
• The interrupt service routine (ISR) is called when

an enabled interrupt occurs
– Must be located at location 0x4

• When an enabled interrupt occurs…
– GIE bit is CLEARED – this disables further interrupts

(do not want to get caught in an infinite loop!)
– Return address is pushed on the stack
– PC loaded with 0x4

• Interrupt response is done behind the scenes
– An interrupt can happen at any time, cannot predict

where normal program execution will be interrupted

V 0.1 8

ISR Responsibilities
• Must save the status of the W register, and Status Register

– If not saved, normal program execution will become unpredictable
since interrupt can happen at anytime

– Also save PCLATH if using pages 1,2,3 (not necessary PIC16873)

• Must determine the source of the interrupt
– If multiple interrupts are enabled, check flag bit status

• Must service the interrupt (clear interrupt flag)
– E.g., for received character interrupt, read the RCREG, this clears

the RCIF bit automatically.

• Restore W, Status registers
• Execute RETFIE (return from interrupt)

– Sets GIE to enable interrupts, reads PC from stack

V 0.1 9

PIC16F873 ISR
org 0x4

movwf W_TEMP ; save W to filereg
movf STATUS,w ; save status in w
clrf STATUS
movwf STATUS_TEMP ; save status to filereg
. . .
. . .ISR code . . .
. . .
movf STATUS_TEMP,w
movwf STATUS ; restore status, restores bank
swapf W_TEMP,f ;restore W, use swap
swapf W_TEMP,w ;because swap changes no flags
retfie ; return from interrupt

W_TEMP location must be reserved in both banks because do
not know what bank is selected when interrupt occurs.

V 0.1 10

PIC16F873 ISR in C

unsigned char received_char;
unsigned char got_char_flag;

/* interrupt service routine */
void interrupt pic_isr(void){

/* see if this interrupt was generated by a
receive character */

if (bittst(PIR1,5)) { /* check RCIF bit */
/* reading this register clears interrupt bit */

received_char = RCREG;
got_char_flag = 1;

}

}

‘interrupt’ keyword
indicates this is ISR

Check if receive char
generated interrupt

Read character, set flag

V 0.1 11

Enabling Interrupts in C
/* code for serial port setup not shown */
/* enable interrupts */

bitset(PIE1, 5); /* enable receive int, RCIE */
bitset(INTCON,6); /* enable peripheral ints, PEIE */
bitset(INTCON,7); /* enable global interrupts, GIE */

for(;;) {
/* wait for interrupt */|
while (!got_char_flag);
c = received_char;
got_char_flag =0; /* clear flag */
c++; /* increment Char */=
putch (c); /* send the char */

}

Set by interrupt service
routine

Get character read by
interrupt service
routine

V 0.1 12

Soooooo…when are interrupts useful?
Previous example simply illustrated the use of interrupts for
reading serial data. Interrupt usage was not really needed since
main routine just waited for data to arrive so no advantage over
polled IO.

Interrupts for serial IO useful when cannot poll serial port often
enough!

Get serial data

Do calculation

Output result

New serial data arrives, if
not using ISR to save data
in buffer, will miss it!!

3

V 0.1 13

doroot.c
Read decimal number
in ASCII format from

serial port

Calculate integer
square root

Output result to
serial port

New data can arrive. Current
ISR only has room to save
ONE character. Depending
on baud rate, can have
overrun error (input FIFO fills
up before we read data
again).

V 0.1 14

Buffering Data for Interrupt IO

• A circular buffer is most often used to handle
interrupt driven INPUT.

• A circular buffer requires the following pointers
– base address of memory buffer
– head index (head pointer)
– tail index (tail pointer)
– size of buffer

• A circular buffer is simply another name for a
FIFO (First-In-First-Out) buffer.
– The name circular buffer helps to visualize the

wraparound conditon

V 0.1 15

Circular buffer, 8 locations long

???
????
????
????
????
????
????
????

head → ← tail

When buffer is empty, head = tail index

V 0.1 16

Circular buffer, write operation

???
dataA
????
????
????
????
????
????

head →
← tail

Interrupt service routine places items in memory buffer by
incrementing head index, then storing value

write a value

???
dataA
dataB
????
????
????
????
????

← tail

write a 2nd value

head →

V 0.1 17

Circular buffer, read operation
Input function occassionally checks to see if head not equal to
tail, if true, then read value by incrementing tail, then reading
memory.

???
dataA
dataB
????
????
????
????
????

← tail

read dataA value

head →

???
dataA
dataB
????
????
????
????
????

← tail

read dataB value

head →

V 0.1 18

Circular buffer, wraparound
when head pointer gets to end of buffer, set back to top of
buffer (wraparound)

???
dataA
dataB
dataC
dataD
dataE
dataF
dataG

← tail

head at end of buffer

head →

dataH
dataA
dataB
dataC
dataD
dataE
dataF
dataG

← tail

head at end of buffer

head →

4

V 0.1 19

Circular buffer, buffer FULL
buffer FULL occurs if interrupt service routines increments
head pointer to place new data, and head = tail!!!!

dataH
dataI
dataB
dataC
dataD
dataE
dataF
dataG

← tail

near overflow

head →
dataH
dataI
dataJ
dataC
dataD
dataE
dataF
dataG

← tail

buffer FULL

head →

Function
taking data out
of buffer
thinks buffer is
empty!!!!

V 0.1 20

How to pick size of circular buffer?
• Must be big enough so that buffer full condition

never occurs
• Routine that is taking data out of buffer must

check it often enough to ensure that buffer full
condition does not occur.
– If buffer fills up because not checking often enough,

then increase the size of the buffer
– No matter how large buffer is, must periodically read

the data.
• Buffer must be big enough so that bursts of data

into buffer does not cause buffer full condition.

V 0.1 21

Circular Buffers in C

#define BUFSIZE 8
unsigned char buf[BUFSIZE];
unsigned char head,tail;

Storage allocation

Checking for data in buffer, reading data:

head++;
if (head == BUFSIZE) head=0;
buf[head] = c;

Placing data in buffer:

Wrap the pointers if at
end of buffer!

if (tail != head){
/* data is available!*/
tail++;
if (tail == BUFSIZE) tail=0;
c = buf[tail];

}

ISR places data into buffer,
normal program execution
reads data from buffer.

This code goes in ISR.

This code goes in getch().

V 0.1 22

Allocating space in Bank1

May need to allocate buffer space and/or variables in bank1 if run
out of space in bank0. Use bank1 tag for variable allocation

#define BUFSIZE 8
bank1 char buf[BUFSIZE];
bank1 unsigned char head,tail;

By default, the PICC compiler attempts to allocate all variable
space in bank0. It will NOT use bank1 space unless you explicitly
tag variables to be stored in bank1. PICC compiler will indicate
error when bank0 space is exhausted.

V 0.1 23

What do you have to know?

• How interrupts behave on the PIC16 for serial IO
• Function of PEIE, GIE bits
• Responsiblilies of ISR
• Assembly language structure of ISR in PIC16
• ISR in PICC C
• Circular buffer operation

